0000000000532645

AUTHOR

Christel Depienne

showing 6 related works from this author

IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients.

2019

Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences.

0301 basic medicineMaleGénétique clinique[SDV]Life Sciences [q-bio]MedizinPhysiology030105 genetics & hereditySeizures/epidemiologyEpilepsyBrain Diseases/epidemiologyX-linked inheritanceIntellectual disabilityGuanine Nucleotide Exchange FactorsProtein IsoformsMissense mutationGenetics(clinical)10. No inequalityNon-U.S. Gov'tGenetics (clinical)X-linked recessive inheritanceComputingMilieux_MISCELLANEOUSBrain DiseasesSex CharacteristicsResearch Support Non-U.S. Gov'tBrainSciences bio-médicales et agricoles3. Good healthPedigreePhenotypeintellectual disabilityFemaleBrain/growth & developmentSex characteristicsGénétique moléculaireGuanine Nucleotide Exchange Factors/geneticsEncephalopathyResearch SupportX-inactivationArticle03 medical and health sciencesSeizuresProtein Isoforms/geneticsmedicineJournal ArticleIQSEC2HumansIntellectual Disability/epidemiology[SDV.GEN]Life Sciences [q-bio]/Geneticsbusiness.industryInfant NewbornisoformsCorrectionInfantmedicine.diseaseNewbornHuman genetics030104 developmental biologyMutationepilepsyHuman medicinebusiness[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction

2021

AbstractWhereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene,SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carryingSATB1variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression…

0301 basic medicineMaleModels MolecularMISSENSE MUTATIONSCHROMATINTranscription GeneticCellMedizinDiseaseHaploinsufficiencymedicine.disease_cause0302 clinical medicineMissense mutationde novo variantsGenetics (clinical)INTERLEUKIN-2seizuresGenetics0303 health sciencesMutationChromatin bindingneurodevelopmental disordersMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]SATB1Phenotypemedicine.anatomical_structureintellectual disabilityFemaleHaploinsufficiencyteeth abnormalitiesProtein BindingNeuroinformaticsEXPRESSIONGENESMutation MissenseBiologyBINDING PROTEINREGION03 medical and health sciencesSATB1Protein DomainsReportGeneticsmedicineHPO-based analysisHumansGenetic Association StudiesHpo-based Analysis ; Satb1 ; Cell-based Functional Assays ; De Novo Variants ; Intellectual Disability ; Neurodevelopmental Disorders ; Seizures ; Teeth Abnormalities030304 developmental biology[SDV.GEN]Life Sciences [q-bio]/GeneticsNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Matrix Attachment Region Binding Proteins030104 developmental biologyNeurodevelopmental DisordersMutationNanomedicine Radboud Institute for Molecular Life Sciences [Radboudumc 19]030217 neurology & neurosurgerycell-based functional assays
researchProduct

Correction: IQSEC2-related encephalopathy in males and females:a comparative study including 37 novel patients

2019

This Article was originally published under Nature Research’s License to Publish, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the Article have been modified accordingly.

Pediatricsmedicine.medical_specialtyText miningbusiness.industryPublished ErratumEncephalopathyMedizinMEDLINEMedicinebusinessmedicine.diseaseGenetics (clinical)
researchProduct

HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond

2018

International audience; Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control neuronal excitability and their dysfunction has been linked to epileptogenesis but few individuals with neurological disorders related to variants altering HCN channels have been reported so far. In 2014, we described five individuals with epileptic encephalopathy due to de novo HCN1 variants. To delineate HCN1-related disorders and investigate genotype-phenotype correlations further, we assembled a cohort of 33 unpublished patients with novel pathogenic or likely pathogenic variants: 19 probands carrying 14 different de novo mutations and four families with dominantly inherited variants segre…

0301 basic medicineProbandMaleModels MolecularPotassium Channels[SDV]Life Sciences [q-bio]Medizinmedicine.disease_causeEpileptogenesisMembrane PotentialsEpilepsy0302 clinical medicineHyperpolarization-Activated Cyclic Nucleotide-Gated ChannelsMissense mutationChildGeneticsMutationMiddle AgedPhenotype3. Good healthTransmembrane domainclinical spectrum; epilepsy; HCN1; intellectual disability; ion channelintellectual disabilityChild PreschoolEpilepsy GeneralizedFemaleSpasms InfantileAdultAdolescentCHO CellsBiology03 medical and health sciencesYoung AdultCricetulusHCN1medicineAnimalsHumansGeneralized epilepsyGenetic Association StudiesAgedInfantmedicine.diseaseElectric Stimulationclinical spectrum030104 developmental biologyMutationion channelMutagenesis Site-DirectedepilepsyNeurology (clinical)030217 neurology & neurosurgery
researchProduct

Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency

2020

International audience; PURPOSE: Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved.METHODS: Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various ty…

MaleMedizinHaploinsufficiencyL-SOX5VARIANTS0302 clinical medicineNeurodevelopmental disorderIntellectual disabilityMissense mutation2.1 Biological and endogenous factorsAetiologyChildGenetics (clinical)GeneticsPediatricGenetics & Heredity0303 health sciencesPedigreeFAMILYDNA-Binding Proteinsdevelopmental delayTRANSCRIPTION FACTORSPhenotypeintellectual disabilityChild Preschoolmissense variantsFemalemissense variants.HaploinsufficiencySOXD Transcription FactorsAdultEXPRESSIONAdolescentIntellectual and Developmental Disabilities (IDD)Clinical SciencesMutation MissenseautismCell fate determinationBiologyLONG FORMSEQUENCEArticle03 medical and health sciencesYoung AdultRare DiseasesClinical ResearchCARTILAGEIntellectual DisabilitymedicineGeneticsAnimalsHumansLanguage Development DisordersGenetic Predisposition to DiseasePreschoolTranscription factorGene030304 developmental biology[SDV.GEN]Life Sciences [q-bio]/GeneticsMUTATIONSHuman GenomeInfantmedicine.diseaseBrain DisordersNeurodevelopmental DisordersDeciphering Developmental Disorder StudyMutationAutismepilepsyMissense030217 neurology & neurosurgeryGENERATIONGenetics in Medicine
researchProduct

Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU

2017

Subtelomeric 1q43q44 microdeletions cause a syndrome associating intellectual disability, microcephaly, seizures and anomalies of the corpus callosum. Despite several previous studies assessing genotype-phenotype correlations, the contribution of genes located in this region to the specific features of this syndrome remains uncertain. Among those, three genes, AKT3, HNRNPU and ZBTB18 are highly expressed in the brain and point mutations in these genes have been recently identified in children with neurodevelopmental phenotypes. In this study, we report the clinical and molecular data from 17 patients with 1q43q44 microdeletions, four with ZBTB18 mutations and seven with HNRNPU mutations, an…

[SDV.GEN]Life Sciences [q-bio]/GeneticsRepressor Proteins/geneticsddc:618Neurodevelopmental Disorders/geneticsHeterogeneous-Nuclear Ribonucleoproteins/geneticsHeterogeneous-Nuclear RibonucleoproteinsChromosomesRepressor ProteinsPhenotypeChromosomes Human Pair 1Neurodevelopmental DisordersMutationGeneticsPair 1HumansGenetics(clinical)Chromosome Deletion[ SDV.GEN ] Life Sciences [q-bio]/GeneticsOriginal InvestigationHuman
researchProduct