0000000000534845

AUTHOR

K. Chrysalidis

showing 36 related works from this author

Large Shape Staggering in Neutron-Deficient Bi Isotopes

2021

researchProduct

New ß-decaying state in 214Bi

2021

researchProduct

Measurement of the Be7(n,p) cross section at thermal energy

2019

The Be7(n,p) cross section was measured with an ion-implanted Be7 target at a thermal neutron beam of the research reactor LVR-15 in Řež. The cross section to the ground state of Li7 is σ(n,p0)=43800±1400b and the cross section to the first excited state of Li7 is σ(n,p1)=520±260b.

PhysicsNuclear reaction010308 nuclear & particles physicsbusiness.industry01 natural sciences7. Clean energyNeutron temperatureNuclear physicsCross section (physics)Excited state0103 physical sciencesResearch reactorGround statebusiness010303 astronomy & astrophysicsBeam (structure)Thermal energyPhysical Review C
researchProduct

Radium ionization scheme development: The first observed autoionizing states and optical pumping effects in the hot cavity environment

2018

© 2018 The Authors This paper reports on resonance ionization scheme development for the production of exotic radium ion beams with the Resonance Ionization Laser Ion Source (RILIS) of the CERN-ISOLDE radioactive ion beam facility. During the study, autoionizing states of atomic radium were observed for the first time. Three ionization schemes were identified, originating from the 7s2 1S0 atomic ground state. The optimal of the identified ionization schemes involves five atomic transitions, four of which are induced by three resonantly tuned lasers. This is the first hot cavity RILIS ionization scheme to employ optical pumping effects. The details of the spectroscopic studies are described …

Ion beamchemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAnalytical ChemistryIonlaw.inventionOptical pumpingRadiumlawIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersNuclear Physics - ExperimentPhysics::Atomic Physics010306 general physicsInstrumentationSpectroscopyPhysics010308 nuclear & particles physicsLaserAtomic and Molecular Physics and OpticsIon sourcechemistryPhysics::Accelerator PhysicsAtomic physicsGround stateSpectrochimica Acta Part B: Atomic Spectroscopy
researchProduct

Enhancing the extraction of laser-ionized beams from an arc discharge ion source volume

2018

© 2018 The Author(s) The Versatile Arc Discharge and Laser Ion Source (VADLIS) is a recently established ion source for the CERN-ISOLDE radioactive ion beam facility. It offers either electron-impact ionization (VADIS-mode) or resonance laser ionization (RILIS-mode). The choice of operating mode depends on the element of interest or the required beam purity. Particle-in-cell simulations using the VSim software show that the ion extraction efficiency of the VADLIS in RILIS-mode can be improved if it is equipped with an insulated extractor plate, to which an optimal voltage can be applied. This enables optimization of the RILIS-mode ion extraction independently of the electron density. Experi…

Nuclear and High Energy PhysicsMaterials scienceIon beamchemistry.chemical_element7. Clean energy01 natural scienceslaw.inventionIonElectric arclawIonization0103 physical sciencesGalliumDetectors and Experimental TechniquesArc discharge ionization010306 general physicsInstrumentationResonance laser ionization010308 nuclear & particles physicsbusiness.industryLaserIon sourceIon sourceParticle-in-cell simulationchemistryOptoelectronicsPhysics::Accelerator PhysicsRadioactive ion beambusinessBeam (structure)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

A concept for the extraction of the most refractory elements at CERN-ISOLDE as carbonyl complex ions

2021

The European physical journal / A 58(5), 94 (2022). doi:10.1140/epja/s10050-022-00739-1

spectroscopyNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)dissociation530moonline separationdischargehexacarbonylsionizationfissionbeamsddc:530Detectors and Experimental Techniquesphysics.ins-detisotopes
researchProduct

Laser photodetachment of radioactive $^{128}$I$^−$

2017

International audience; The first experimental investigation of the electron affinity (EA) of a radioactive isotope has been conducted at the CERN-ISOLDE radioactive ion beam facility. The EA of the radioactive iodine isotope (128)I (t (1/2) = 25 min) was determined to be 3.059 052(38) eV. The experiment was conducted using the newly developed Gothenburg ANion Detector for Affinity measurements by Laser PHotodetachment (GANDALPH) apparatus, connected to a CERN-ISOLDE experimental beamline. (128)I was produced in fission induced by 1.4 GeV protons striking a thorium/tantalum foil target and then extracted as singly charged negative ions at a beam energy of 20 keV. Laser photodetachment of th…

Nuclear and High Energy PhysicsIon beamFissionPhysics::Instrumentation and Detectors[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]02 engineering and technologyPhoton energy01 natural sciences7. Clean energySecondary electronsISOLDElaw.inventionIonlawElectron affinity0103 physical scienceselectron affinityPhysics::Atomic Physics010306 general physicsNuclear ExperimentPhysicsiodinephotodetachment021001 nanoscience & nanotechnologyLaserAccelerators and Storage RingsBeamlinePhysics::Accelerator PhysicsAtomic physics0210 nano-technology
researchProduct

Spectroscopy of short-lived radioactive molecules

2020

Molecular spectroscopy offers opportunities for the exploration of the fundamental laws of nature and the search for new particle physics beyond the standard model1–4. Radioactive molecules—in which one or more of the atoms possesses a radioactive nucleus—can contain heavy and deformed nuclei, offering high sensitivity for investigating parity- and time-reversal-violation effects5,6. Radium monofluoride, RaF, is of particular interest because it is predicted to have an electronic structure appropriate for laser cooling6, thus paving the way for its use in high-precision spectroscopic studies. Furthermore, the effects of symmetry-violating nuclear moments are strongly enhanced5,7–9 in molecu…

spektroskopiacollinearnucl-ex01 natural sciences010305 fluids & plasmasRadiumchemistry.chemical_compoundIonizationExperimental nuclear physicsNuclear ExperimentPhysicsMultidisciplinaryLarge Hadron ColliderStable isotope rationew physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]hep-thmolekyylithep-phradiumelectron: electric momentNuclear Physics - Theoryradioactivitymany-body problemElectronic structure of atoms and moleculesAtomic physicsydinfysiikkaParticle Physics - Theoryexceptionalnucl-th[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]MonofluorideResearchInstitutes_Networks_Beacons/photon_science_institutechemistry.chemical_elementnucleus: structure functionElectronic structure[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Photon Science InstituteArticle0103 physical sciencesionizationMoleculeNuclear Physics - Experiment010306 general physicsSpectroscopyenhancementParticle Physics - Phenomenologystabilitysensitivitylaserchemistry[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Exotic atoms and moleculesnucleus: deformation
researchProduct

Isotope Shifts of Radium Monofluoride Molecules

2021

Isotope shifts of $^{223-226,228}$Ra$^{19}$F were measured for different vibrational levels in the electronic transition $A^{2}{}{\Pi}_{1/2}\leftarrow X^{2}{}{\Sigma}^{+}$. The observed isotope shifts demonstrate the particularly high sensitivity of radium monofluoride to nuclear size effects, offering a stringent test of models describing the electronic density within the radium nucleus. Ab initio quantum chemical calculations are in excellent agreement with experimental observations. These results highlight some of the unique opportunities that short-lived molecules could offer in nuclear structure and in fundamental symmetry studies.

[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th]FIELD SHIFTNuclear TheoryAtomic Physics (physics.atom-ph)Ab initioGeneral Physics and AstronomyNUCLEAR-STRUCTUREnucl-ex01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmasENERGYchemistry.chemical_compoundatomifysiikkaMOMENTSPhysics::Atomic PhysicsNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentPhysicsIsotopePhysicsNuclear structureradiumNuclear Physics - TheoryPhysical SciencesAtomic physicsydinfysiikkanucl-th[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Monofluoride[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex][PHYS.PHYS.PHYS-GEN-PH] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Physics MultidisciplinaryOther Fields of PhysicsFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]physics.atom-phMolecular electronic transitionELECTRONIC-STRUCTURE CALCULATIONSNuclear Theory (nucl-th)ATOMS0103 physical sciencesMoleculeSPECTRANuclear Physics - ExperimentSensitivity (control systems)010306 general physicsisotoopitScience & Technology[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]chemistryMECHANICSMASS DEPENDENCELASERElectronic density
researchProduct

Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE

2017

At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of–the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210–950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, …

PhysicsNuclear and High Energy PhysicsRadionuclideIon beam010308 nuclear & particles physicsRadiochemistryPhysics::OpticsLaser7. Clean energy01 natural sciencesAccelerators and Storage RingsIon sourcelaw.inventionIon beam depositionlaw0103 physical sciencesPhysics::Accelerator PhysicsNuclear Physics - ExperimentPhysics::Atomic Physics010306 general physicsSpectroscopy
researchProduct

Evidence of a sudden increase in the nuclear size of proton-rich silver-96

2021

Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with th…

CHARGE RADIIEFFICIENCYProtonScienceSYMMETRYNuclear TheoryGeneral Physics and AstronomyIONIZATION SPECTROSCOPY[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyEffective nuclear chargeArticleNuclear physicsCharge radiusMOMENTS0103 physical sciencesexperimental nuclear physicsNeutronNuclear Physics - ExperimentPhysics::Atomic PhysicsBETA-DECAYExperimental nuclear physics010306 general physicsLASER SPECTROSCOPYNuclear ExperimentPhysicsRESONANCE IONIZATIONisotoopitMultidisciplinaryScience & TechnologyIsotope010308 nuclear & particles physicsQGeneral ChemistryRadiusION-SOURCEMultidisciplinary SciencesTheoretical nuclear physicsNeutron numbertheoretical nuclear physicsScience & Technology - Other TopicsISOTOPESDensity functional theoryydinfysiikka
researchProduct

Resonance ionization of holmium for ion implantation in microcalorimeters

2016

Abstract The determination of the electron neutrino mass by calorimetric measurement of the 163 Ho electron capture spectrum requires ultra-pure samples. Several collaborations, like ECHo or HOLMES, intend to employ microcalorimeters into which 163 Ho is implanted as an ion beam. This makes a selective and additionally very efficient ion source for holmium mandatory. For this purpose, laser resonance ionization of stable holmium 165 Ho was studied, using a three step excitation scheme driven by pulsed Ti:sapphire lasers. Five measurements with sample sizes of 10 14 and 10 15 atoms were performed for the efficiency investigation. In average, an excellent ionization efficiency of 32(5) % coul…

Nuclear and High Energy PhysicsIon beamChemistrychemistry.chemical_elementMass spectrometry01 natural sciencesIon source010305 fluids & plasmasAtmospheric-pressure laser ionizationIon beam depositionIon implantationIonization0103 physical sciencesAtomic physics010306 general physicsHolmiumInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

RILIS-ionized mercury and tellurium beams at ISOLDE CERN

2017

This paper presents the results of ionization scheme development for application at the ISOLDE Resonance Ionization Laser Ion Source (RILIS). Two new ionization schemes for mercury are presented: a three-step three-resonance ionization scheme, ionizing via an excitation to a Rydberg level and a three-step two-resonance ionization scheme, with a non-resonant final step to the ionization continuum that corresponded to a factor of four higher ionization efficiency. The efficiency of the optimal mercury ionization scheme was measured, together with the efficiency of a new three-step three resonance ionization scheme for tellurium. The efficiencies of the mercury and tellurium ionization schemes…

Nuclear and High Energy PhysicsHelium ionization detectorchemistry.chemical_elementCondensed Matter Physics7. Clean energy01 natural sciencesAtomic and Molecular Physics and OpticsIon source010305 fluids & plasmasMercury (element)Atmospheric-pressure laser ionizationIonsymbols.namesakechemistryIonization0103 physical sciencesRydberg formulasymbolsPhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsPhysical and Theoretical ChemistryAtomic physics010306 general physicsTellurium
researchProduct

The CERN/ISOLDE Laser Ion Source

2017

Laser resonance photo-ionization an essential aspect of radioactive ion beam production for fundamental and applied physics research. The laser ion source of the ISOLDE facility, described here, is the most versatile of its type worldwide.

Materials scienceLarge Hadron ColliderApplied physicsIon beambusiness.industry02 engineering and technology021001 nanoscience & nanotechnologyLaser01 natural sciencesIon sourcelaw.invention010309 opticsOpticslaw0103 physical sciencesPhysics::Accelerator PhysicsLaser resonancePhysics::Atomic PhysicsNuclear Experiment0210 nano-technologybusinessLaser beamsConference on Lasers and Electro-Optics
researchProduct

β decay of In133 : γ emission from neutron-unbound states in Sn133

2019

Excited states in Sn-133 were investigated through the beta decay of In-133 at the ISOLDE facility. The ISOLDE Resonance Ionization Laser Ion Source (RILIS) provided isomer-selective ionization for In-133, allowing us to study separately, and in detail, the beta-decay branch of In-133 J(pi)= (9/2(+)) ground state and its J(pi) = (1/2(-)) isomer.Thanks to the large spin difference of the two beta-decaying states of In-133, it is possible to investigate separately the lower and higher spin states in the daughter, Sn-133, and thus to probe independently different single-particle and single-hole levels. We report here new gamma transitions observed in the decay of In-133, including those assign…

PhysicsSpin states010308 nuclear & particles physicsGamma ray01 natural sciences7. Clean energyBeta decayIon source3. Good healthIonizationExcited state0103 physical sciencesNeutronAtomic physics010306 general physicsGround statePhysical Review C
researchProduct

Large shape staggering in neutron-deficient Bi isotopes

2021

The changes in the mean-square charge radius (relative to 209Bi), magnetic dipole, and electric quadrupole moments of 187,188,189,191Bi were measured using the in-source resonance-ionization spectroscopy technique at ISOLDE (CERN). A large staggering in radii was found in 187,188,189Big, manifested by a sharp radius increase for the ground state of 188Bi relative to the neighboring 187,189Big. A large isomer shift was also observed for 188Bim. Both effects happen at the same neutron number, N=105, where the shape staggering and a similar isomer shift were observed in the mercury isotopes. Experimental results are reproduced by mean-field calculations where the ground or isomeric states were…

PhysicsMagnetic moment010308 nuclear & particles physics116 Chemical sciencesGeneral Physics and Astronomy[CHIM.MATE]Chemical Sciences/Material chemistry01 natural sciencesPhysique atomique et nucléaire[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryCharge radiusNeutron number0103 physical sciencesQuadrupoleNuclear Physics - ExperimentNeutronAtomic physics010306 general physicsSpin (physics)Ground stateMagnetic dipole
researchProduct

In-source laser spectroscopy of dysprosium isotopes at the ISOLDE-RILIS

2019

A number of radiogenically produced dysprosium isotopes have been studied by in-source laser spectroscopy at ISOLDE using the Resonance Ionization Laser Ion Source (RILIS). Isotope shifts were measured relative to $^{152}$Dy in the 4 f$^{ 10}$6s$^{2}$ $^5$I$_8$ (gs) $\rightarrow$ 4 f$^{ 10}$6s6p (8,1)$^8_o$ (418.8 nm$_{vac}$) resonance transition. The electronic factor, F, and mass shift factor, M, were extracted and used for determining the changes in mean-squared charge radii for $^{145m}$Dy and $^{147m}$Dy for the first time. A number of radiogenically produced dysprosium isotopes have been studied by in-source laser spectroscopy at ISOLDE using the Resonance Ionization Laser Ion Source (…

Nuclear and High Energy PhysicsMaterials science010504 meteorology & atmospheric sciencesIsotope3106010308 nuclear & particles physics3105Analytical chemistrychemistry.chemical_elementResonanceLaser01 natural sciencesIon sourceShift factorlaw.inventionchemistrylaw0103 physical sciencesResonance ionizationDysprosiumSpectroscopyInstrumentation0105 earth and related environmental sciences
researchProduct

Alternative approach to populate and study the $^{229}Th$ nuclear clock isomer

2019

A new approach to observe the radiative decay of the $^{229}$Th nuclear isomer, and to determine its energy and radiative lifetime, is presented. Situated at a uniquely low excitation energy, this nuclear state might be a key ingredient for the development of a nuclear clock, a nuclear laser and the search for time variations of the fundamental constants. The isomer's $\gamma$ decay towards the ground state will be studied with a high-resolution VUV spectrometer after its production by the $\beta$ decay of $^{229}$Ac. The novel production method presents a number of advantages asserting its competitive nature with respect to the commonly used $^{233}$U $\alpha$-decay recoil source. In this …

Technology and EngineeringIon beamFOS: Physical sciencesNuclear isomernucl-ex7. Clean energy01 natural sciences010305 fluids & plasmasNuclear physicsRecoil0103 physical sciencesEXCITATIONRadiative transferNuclear Physics - Experimentddc:530Nuclear Experiment (nucl-ex)010306 general physicsLASER SPECTROSCOPYNuclear ExperimentNuclear ExperimentPhysicsnuclear structure and decaysAtomic clockChemistryPhysics and AstronomySTATESbeta decayGround stateisomer decaysydinfysiikkaDECAYEnergy (signal processing)ExcitationTRANSITION
researchProduct

Continuously tunable diamond Raman laser for resonance ionization experiments at CERN

2019

We demonstrate a highly efficient, continuously tunable, diamond Raman laser operating in the blue region of the spectrum. The linewidth and tunability characteristics of a frequency-doubled Ti:Sapphire laser were transferred directly to the Stokes output, offering great potential for spectroscopic applications using an all-solid-state platform.

Materials scienceLarge Hadron Colliderbusiness.industryPhysics::OpticsDiamondengineering.materialLaserlaw.inventionLaser linewidthRaman laserlawResonance ionizationengineeringSapphireOptoelectronicsPhysics::Atomic PhysicsbusinessLaser Congress 2019 (ASSL, LAC, LS&C)
researchProduct

First demonstration of Doppler-free 2-photon in-source laser spectroscopy at the ISOLDE-RILIS

2020

Abstract Collinear Doppler-free 2-photon resonance ionization has been applied inside a hot cavity laser ion source environment at CERN-ISOLDE. An injection-seeded Ti:sapphire ring laser was used to generate light pulses with a Fourier-limited linewidth for high-resolution spectroscopy. Using a molybdenum foil as a reflective surface positioned at the end of the target transfer line, rubidium was successfully ionized inside the hot cavity. The results are presented alongside previously obtained data from measurements performed at the RISIKO mass separator at Mainz University, where collinear and perpendicular ionization geometries were tested inside an RFQ ion guide. This work is a pre-curs…

Nuclear and High Energy PhysicsMaterials sciencetutkimuslaitteetspektroskopiaPhysics::OpticsRing laser01 natural scienceslaw.invention010309 opticsLaser linewidthsymbols.namesakeOpticslawIonization0103 physical sciencesPhysics::Atomic Physics010306 general physicsSpectroscopyInstrumentationRILISbusiness.industryLaser2-photon spectroscopyIon sourceresonance laser ionizationsymbolsPhysics::Accelerator PhysicsbusinessydinfysiikkaDoppler effectDoppler broadeningNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Production, isolation and characterization of radiochemically pure 163Ho samples for the ECHo-project

2018

Abstract Several experiments on the study of the electron neutrino mass are based on high-statistics measurements of the energy spectrum following electron capture of the radionuclide 163Ho. They rely on the availability of large, radiochemically pure samples of 163Ho. Here, we describe the production, separation, characterization, and sample production within the Electron Capture in Holmium-163 (ECHo) project. 163Ho has been produced by thermal neutron activation of enriched, prepurified 162Er targets in the high flux reactor of the Institut Laue-Langevin, Grenoble, France, in irradiations lasting up to 54 days. Irradiated targets were chemically processed by means of extraction chromatogr…

ChromatographyChemistryEcho (computing)lanthanide separationneutron activation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]010403 inorganic & nuclear chemistryIsolation (microbiology)7. Clean energy01 natural sciencesNeutrino mass determination0104 chemical sciencesCharacterization (materials science)163Ho0103 physical sciencesextraction chromatographyPhysical and Theoretical Chemistry010306 general physicsNeutron activationRadiochimica Acta
researchProduct

Continuously tunable diamond Raman laser for resonance laser ionization.

2019

We demonstrate a highly efficient, tunable, ∼5 GHz line- width diamond Raman laser operating at 479 nm. The diamond laser was pumped by a wavelength-tunable intra- cavity frequency-doubled titanium sapphire (Ti:Sapphire) laser operating at around 450 nm, at a repetition rate of 10 kHz with a pulse duration of 50 ns. The Raman reso- nator produced a continuously tunable output with high stability, high conversion efficiency (28%), and beam quality (M$^{2}$ <1.2). We also demonstrate that the linewidth and tunability of the pump laser is directly transferred to the Stokes output. Our results show that diamond Raman lasers offer great potential for spectroscopic applications, such as resonance…

Materials sciencePhysics::Optics02 engineering and technologyLaser pumpingengineering.material01 natural scienceslaw.invention010309 opticsLaser linewidthsymbols.namesakeOpticslaw0103 physical sciencesPhysics::Atomic Physicsbusiness.industryDiamond021001 nanoscience & nanotechnologyLaserAtomic and Molecular Physics and OpticsRaman laserSapphireengineeringsymbolsLaser beam quality0210 nano-technologybusinessRaman spectroscopyOptics letters
researchProduct

Precision Mass Measurements of Cr58–63 : Nuclear Collectivity Towards the N=40 Island of Inversion

2018

The neutron-rich isotopes $^{58-63}$Cr were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron mid-shell region, which is a gateway to the second island of inversion around \emph{N}=40. In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the \emph{ab initio} in-medium similarity renormalization…

PhysicsProtonIsotope010308 nuclear & particles physicsIsland of inversionNuclear TheoryAb initioNuclear structureGeneral Physics and AstronomyRenormalization group01 natural sciences7. Clean energyISOLTRAPNuclear physics0103 physical sciencesPhysics::Atomic and Molecular ClustersNeutronNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

The identification of autoionizing states of atomic chromium for the resonance ionization laser ion source of the ISOLDE radioactive ion beam facility

2017

Abstract This paper presents the results of an investigation into autoionizing states of atomic chromium, in the service of the resonance ionization laser ion source (RILIS): the principal ion source of the ISOLDE radioactive ion beam facility based at CERN. The multi-step resonance photo-ionization process enables element selective ionization which, in combination with mass separation, allows isotope specific selectivity in the production of radioactive ion beams at ISOLDE. The element selective nature of the process requires a multi-step “ionization scheme” to be developed for each element. Using the method of in-source resonance ionization spectroscopy, an optimal three-step, three-reson…

Ion beamChemistry010401 analytical chemistryResonanceMass spectrometryphysics.atom-ph01 natural sciencesIon sourceAtomic and Molecular Physics and Optics0104 chemical sciencesAtmospheric-pressure laser ionizationAnalytical ChemistryIon beam depositionIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Accelerator PhysicsNuclear Physics - ExperimentPhysics::Atomic PhysicsAtomic physics010306 general physicsInstrumentationElectron ionizationSpectroscopySpectrochimica Acta Part B: Atomic Spectroscopy
researchProduct

New β-decaying state in 214Bi

2021

A new β-decaying state in 214Bi has been identified at the ISOLDE Decay Station at the CERN-ISOLDE facility. A preferred Iπ = (8−) assignment was suggested for this state based on the β-decay feeding pattern to levels in 214Po and shell-model calculations. The half-life of the Iπ = (8−) state was deduced to be T1/2 = 9.39(10) min. The deexcitation of the levels populated in 214Po by the β decay of this state was investigated via γ -γ coincidences and a number of new levels and transitions was identified. Shell-model calculations for excited states in 214Bi and 214Po were performed using two different effective interactions: the H208 and the modified Kuo-Herling particle interaction. Both ca…

isomeriamittauspuoliintumisaikafysiikkaydinfysiikka
researchProduct

Production of neptunium and plutonium nuclides from uranium carbide using 1.4-GeV protons

2023

Accelerator-based techniques are one of the leading ways to produce radioactive nuclei. In this work, the Isotope Separation On-Line method was employed at the CERN-ISOLDE facility to produce neptunium and plutonium from a uranium carbide target material using 1.4-GeV protons. Neptunium and plutonium were laser-ionized and extracted as 30-keV ion beams. A Multi-Reflection Time-of-Flight mass spectrometer was used for ion identification by means of time-of-flight measurements as well as for isobaric separation. Isotope shifts were investigated for the 395.6-nm ground state transition in $^{236,237,239}$Np and the 413.4-nm ground state transition in $^{236,239,240}$Pu. Rates of $^{235-241}$Np…

FOS: Physical sciencesNuclear Physics - ExperimentNuclear Experiment (nucl-ex)nucl-exNuclear Experiment
researchProduct

Precision Mass Measurement of $^{58-63}$Cr: Nuclear Collectivity towards the $N=40$ Island of Inversion

2018

The neutron-rich isotopes $^{58-63}$Cr were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron mid-shell region, which is a gateway to the second island of inversion around \emph{N}=40. In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the \emph{ab initio} in-medium similarity renormalization…

Nuclear Theory (nucl-th)Nuclear Theorynucl-thNuclear Physics - TheoryNuclear TheoryPhysics::Atomic and Molecular ClustersFOS: Physical sciencesNuclear Physics - ExperimentNuclear Experiment (nucl-ex)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exNuclear ExperimentNuclear Experiment
researchProduct

First ß-decay spectroscopy of 135In and new ß-decay branches of 134In

2021

researchProduct

Spectroscopy of short-lived radioactive molecules: A sensitive laboratory for new physics

2019

The study of molecular systems provides exceptional opportunities for the exploration of the fundamental laws of nature and for the search for physics beyond the Standard Model of particle physics. Measurements of molecules composed of naturally occurring nuclei have provided the most stringent upper bounds to the electron electric dipole moment to date, and offer a route to investigate the violation of fundamental symmetries with unprecedented sensitivity. Radioactive molecules - where one or more of their atoms possesses a radioactive nucleus - can contain heavy and deformed nuclei, offering superior sensitivity for EDM measurements as well as for other symmetry-violating effects. Radium …

High Energy Physics - TheoryexceptionalNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]collinearFOS: Physical sciencesnucleus: structure function[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)ionizationPhysics::Atomic PhysicsNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentenhancementnew physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]stabilitysensitivitylaserradiumelectron: electric momentHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)radioactivity[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]many-body problemnucleus: deformation
researchProduct

First β-decay spectroscopy of $^{135}$In and new $β$-decay branches of $^{134}$In

2021

International audience; The $\beta$ decay of the neutron-rich $^{134}$In and $^{135}$In was investigated experimentally in order to provide new insights into the nuclear structure of the tin isotopes with magic proton number $Z=50$ above the $N=82$ shell. The $\beta$-delayed $\gamma$-ray spectroscopy measurement was performed at the ISOLDE facility at CERN, where indium isotopes were selectively laser-ionized and on-line mass separated. Three $\beta$-decay branches of $^{134}$In were established, two of which were observed for the first time. Population of neutron-unbound states decaying via $\gamma$ rays was identified in the two daughter nuclei of $^{134}$In, $^{134}$Sn and $^{133}$Sn, at…

isotoopitmittausAstrophysics::High Energy Astrophysical PhenomenaspektroskopiaNuclear TheoryNuclear Physics - Experimentneutronit[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]fysiikkaydinfysiikkaNuclear ExperimentNuclear Experiment
researchProduct

First β -decay spectroscopy of In 135 and new β -decay branches of In 134

Physical Review C
researchProduct

Impact of Nuclear Deformation and Pairing on the Charge Radii of Palladium Isotopes.

2022

International audience; The impact of nuclear deformation can been seen in the systematics of nuclear charge radii, with radii generally expanding with increasing deformation. In this Letter, we present a detailed analysis of the precise relationship between nuclear quadrupole deformation and the nuclear size. Our approach combines the first measurements of the changes in the mean-square charge radii of well-deformed palladium isotopes between A=98 and A=118 with nuclear density functional calculations using Fayans functionals, specifically Fy(std) and Fy(Δr,HFB), and the UNEDF2 functional. The changes in mean-square charge radii are extracted from collinear laser spectroscopy measurements …

isotoopitNuclear TheoryGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]palladiumydinfysiikkaPhysical review letters
researchProduct

In-source and in-trap formation of molecular ions in the actinide mass range at CERN-ISOLDE

2023

The use of radioactive molecules for fundamental physics research is a developing interdisciplinary field limited dominantly by their scarce availability. In this work, radioactive molecular ion beams containing actinide nuclei extracted from uranium carbide targets are produced via the Isotope Separation On-Line technique at the CERN-ISOLDE facility. Two methods of molecular beam production are studied: extraction of molecular ion beams from the ion source, and formation of molecular ions from the mass-separated ion beam in a gas-filled radio-frequency quadrupole ion trap. Ion currents of U$^+$, UO$_{1-3}^+$, UC$_{1-3}^+$, UF$_{1-4}^+$, UF$_{1,2}$O$_{1,2}^+$ are reported. Metastable tantal…

Physics - Instrumentation and DetectorsFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Detectors and Experimental Techniquesphysics.ins-det
researchProduct

Measurement of the 7Be(n,p) cross section at thermal energy

2019

The 7Be(n,p) cross section was measured with an ion-implanted 7Be target at a thermal neutron beam of the research reactor LVR-15 in Řež. The cross section to the ground state of 7Li is σ(n,p0)=43800±1400b and the cross section to the first excited state of 7Li is σ(n,p1)=520±260b.

Physical Review C
researchProduct

Detailed spectroscopy of doubly magic $^{132}$Sn

2020

The structure of the doubly magic $^{132}_{50}$Sn$_{82}$ has been investigated at the ISOLDE facility at CERN, populated both by the $\beta^-$decay of $^{132}$In and $\beta^-$-delayed neutron emission of $^{133}$In. The level scheme of $^{132}$Sn is greatly expanded with the addition of 68 $\gamma$-transitions and 17 levels observed for the first time in the $\beta$ decay. The information on the excited structure is completed by new $\gamma$-transitions and states populated in the $\beta$-n decay of $^{133}$In. Improved delayed neutron emission probabilities are obtained both for $^{132}$In and $^{133}$In. Level lifetimes are measured via the Advanced Time-Delayed $\beta\gamma\gamma$(t) fas…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNuclear Physics - Experiment[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)nucl-exNuclear StructureNuclear Experiment
researchProduct

First -decay spectroscopy of and new -decay branches of

2021

19 pags., 14 figs., 3 tabs.

researchProduct