0000000000534858

AUTHOR

P. Molkanov

Large Shape Staggering in Neutron-Deficient Bi Isotopes

research product

New ß-decaying state in 214Bi

research product

New β-decaying state in 214Bi

A new β-decaying state in 214Bi has been identified at the ISOLDE Decay Station at the CERN-ISOLDE facility. A preferred Iπ = (8−) assignment was suggested for this state based on the β-decay feeding pattern to levels in 214Po and shell-model calculations. The half-life of the Iπ = (8−) state was deduced to be T1/2 = 9.39(10) min. The deexcitation of the levels populated in 214Po by the β decay of this state was investigated via γ -γ coincidences and a number of new levels and transitions was identified. Shell-model calculations for excited states in 214Bi and 214Po were performed using two different effective interactions: the H208 and the modified Kuo-Herling particle interaction. Both ca…

research product

Large shape staggering in neutron-deficient Bi isotopes

The changes in the mean-square charge radius (relative to 209Bi), magnetic dipole, and electric quadrupole moments of 187,188,189,191Bi were measured using the in-source resonance-ionization spectroscopy technique at ISOLDE (CERN). A large staggering in radii was found in 187,188,189Big, manifested by a sharp radius increase for the ground state of 188Bi relative to the neighboring 187,189Big. A large isomer shift was also observed for 188Bim. Both effects happen at the same neutron number, N=105, where the shape staggering and a similar isomer shift were observed in the mercury isotopes. Experimental results are reproduced by mean-field calculations where the ground or isomeric states were…

research product