0000000000535177

AUTHOR

Arnaud Desmedt

showing 3 related works from this author

QENS investigation of filled rubbers

2002

The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene–ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface.

chemistry.chemical_classificationMaterials scienceGeneral ChemistryDynamic mechanical analysisPolymerengineering.materialElastomerNatural rubberchemistryvisual_artFiller (materials)Quasielastic neutron scatteringvisual_art.visual_art_mediumengineeringRelaxation (physics)General Materials ScienceComposite materialThermal analysisApplied Physics A: Materials Science & Processing
researchProduct

Nitrogen Hydrate Cage Occupancy and Bulk Modulus Inferred from Density Functional Theory-Derived Cell Parameters

2021

International audience; Gas clathrate hydrate solid materials, ubiquitous in nature as found either on the ocean floor, permafrost on the Earth, or in extraterrestrial planets and comets, are also technologically relevant, for example, in energy storage or carbon dioxide sequestration. Nitrogen hydrate, in particular, is of great interest as a promoter of the kinetics of the methane replacement reaction by carbon dioxide in natural gas hydrates. This hydrate may also appear in the chemistry of planets wherever nitrogen constitutes the majority of the atmosphere. A fine understanding of the stability of this hydrate under various thermodynamic conditions is thus of utmost importance to asses…

Materials scienceClathrate hydrateClathrate hydrates02 engineering and technology010402 general chemistryPermafrost01 natural sciencesAstrobiologyStructural / thermomechanical propertiesPlanetEnergetic propertiesPhysical and Theoretical ChemistryDFT - Density Functional TheoryComputingMilieux_MISCELLANEOUSBulk modulus[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryGeneral EnergyExtraterrestrial life[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Density functional theory0210 nano-technologyHydrateEarth (classical element)
researchProduct

Molecular Selectivity of CO–N 2 Mixed Hydrates: Raman Spectroscopy and GCMC Studies

2020

This paper reports a novel quantitative investigation concerning the CO selectivity properties for mixed CO–N2 hydrates. The study was developed by combining Raman scattering experiments and grand ...

Materials science02 engineering and technology[CHIM.MATE]Chemical Sciences/Material chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialssymbols.namesakeGeneral Energy[SDU]Sciences of the Universe [physics]symbols[CHIM]Chemical SciencesPhysical chemistryPhysical and Theoretical Chemistry0210 nano-technologySelectivityRaman spectroscopyRaman scatteringComputingMilieux_MISCELLANEOUS
researchProduct