0000000000535449

AUTHOR

Muller

showing 2 related works from this author

Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

2013

The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, lo…

AstronomyDetector alignment and calibration methods (lasers sources particle-beams)01 natural sciencesDetector alignment and calibration methods (laserObservatoryATMOSPHERIC CONDITIONSDetector alignment and calibration methodsInstrumentationcosmic rayMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsatmospheric monitoring[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsData analysiparticle-beams)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCentral Laser FacilityFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenasources[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]sourceAuger Experimentaerosols * Authors are listed on the following pagesData analysisFOS: Physical sciencesCosmic rayAuger Experiment; cosmic rays; atmospheric monitoring; aerosolsOpticscosmic raysUltra-high energy cosmic rays. atmospheric monitoring. aerosols0103 physical sciences010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physicsAttenuationAtmospheric correctionUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AerosolDetector alignment and calibration methods (lasersAir showerdetector alignment and calibration methods (lasers; sources; particle-beams); large detector systems for particle and astroparticle physics; data analysisExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicbusinessRAIOS CÓSMICOSaerosolsSYSTEM
researchProduct

Measurements of the Absolute Branching Fractions of B± →k±Xc c

2020

A study of the two-body decays B±→XccK±, where Xcc refers to one charmonium state, is reported by the BABAR Collaboration using a data sample of 424 fb-1. The absolute determination of branching fractions for these decays are significantly improved compared to previous BABAR measurements. Evidence is found for the decay B+→X(3872)K+ at the 3σ level. The absolute branching fraction B[B+→X(3872)K+]=[2.1±0.6(stat)±0.3(syst)]×10-4 is measured for the first time. It follows that B[X(3872)→J/ψπ+π-]=(4.1±1.3)%, supporting the hypothesis of a molecular component for this resonance.

PhysicsParticle physics:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Meson010308 nuclear & particles physicsElectron–positron annihilationGeneral Physics and AstronomyBaBar experimentBottom mesonBaBar; PEP-II; B meson; Bottom mesons;Bottom mesonsB mesonBranching (polymer chemistry)7. Clean energy01 natural sciencesLower limitHEPNO:Nuclear and elementary particle physics: 431 [VDP]0103 physical sciencesBaBarPEP-IIB meson010306 general physicsBar (unit)
researchProduct