0000000000536031

AUTHOR

Sébastien Küry

Pathogenic DDX3X mutations impair RNA metabolism and neurogenesis during fetal cortical development

AbstractDe novo germline mutations in the RNA helicase DDX3X account for 1-3% of unexplained intellectual disability (ID) cases in females, and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here we use human and mouse genetics, and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n=78), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcomes.…

research product

Mutations in FAM111B Cause Hereditary Fibrosing Poikiloderma with Tendon Contracture, Myopathy, and Pulmonary Fibrosis

Congenital poikiloderma is characterized by a combination of mottled pigmentation, telangiectasia, and epidermal atrophy in the first few months of life. We have previously described a South African European-descent family affected by a rare autosomal-dominant form of hereditary fibrosing poikiloderma accompanied by tendon contracture, myopathy, and pulmonary fibrosis. Here, we report the identification of causative mutations in FAM111B by whole-exome sequencing. In total, three FAM111B missense mutations were identified in five kindreds of different ethnic backgrounds. The mutation segregated with the disease in one large pedigree, and mutations were de novo in two other pedigrees. All thr…

research product

Pathogenic DDX3X Mutations Impair RNA Metabolism and Neurogenesis during Fetal Cortical Development.

Summary De novo germline mutations in the RNA helicase DDX3X account for 1%–3% of unexplained intellectual disability (ID) cases in females and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here, we use human and mouse genetics and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n = 107), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcom…

research product

Missense variants in DPYSL5 cause a neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities

International audience; The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intel…

research product

Expanding the clinical spectrum of hereditary fibrosing poikiloderma with tendon contractures, myopathy and pulmonary fibrosis due to FAM111B mutations

Background Hereditary Fibrosing Poikiloderma (HFP) with tendon contractures, myopathy and pulmonary fibrosis (POIKTMP [MIM 615704]) is a very recently described entity of syndromic inherited poikiloderma. Previously by using whole exome sequencing in five families, we identified the causative gene, FAM111B (NM_198947.3), the function of which is still unknown. Our objective in this study was to better define the specific features of POIKTMP through a larger series of patients. Methods Clinical and molecular data of two families and eight independent sporadic cases, including six new cases, were collected. Results Key features consist of: (i) early-onset poikiloderma, hypotrichosis and hypoh…

research product

NEXMIF encephalopathy: an X-linked disorder with male and female phenotypic patterns

Contains fulltext : 231688.pdf (Publisher’s version ) (Closed access) PURPOSE: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidi…

research product

Biallelic pathogenic variants in the lanosterol synthase gene LSS involved in the cholesterol biosynthesis cause alopecia with intellectual disability, a rare recessive neuroectodermal syndrome.

International audience; Purpose Lanosterol synthase (LSS) gene was initially described in families with extensive congenital cataracts. Recently, a study has highlighted LSS associated with hypotrichosis simplex. We expanded the phenotypic spectrum of LSS to a recessive neuroectodermal syndrome formerly named alopecia with mental retardation (APMR) syndrome. It is a rare autosomal recessive condition characterized by hypotrichosis and intellectual disability (ID) or developmental delay (DD), frequently associated with early-onset epilepsy and other dermatological features. Methods Through a multicenter international collaborative study, we identified LSS pathogenic variants in APMR individu…

research product