0000000000536162

AUTHOR

A Longhin

showing 3 related works from this author

International Scoping Study (ISS) for a future neutrino factory and Super-Beam facility. Detectors and flux instrumentation for future neutrino facil…

2009

Technical report by The ISS Detector Working Group; This report summarises the conclusions from the detector group of the International Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector options for each possible neutrino beam are defined as follows: 1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV Beta Beam and Super Beam facility. 2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium energy facility between 1-5 GeV. These include a totally active scintillating detector (TASD), a liquid argon TPC or a water Cherenkov detector. 3. A 100 kton magnetized iron neutrino det…

Particle physicsneutrino factoryCherenkov detectorPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaBeam-line instrumentation (beam position and profile monitorsddc:500.27. Clean energy01 natural sciencesBunch length monitors)law.inventionNuclear physicsneutrinolaw0103 physical sciencesbeam-intensity monitorsneutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentationbeam-intensity monitorMathematical PhysicsdetectorsPhysicsMuon010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsDetectorFísicaBeam-intensity monitorsFIS/01 - FISICA SPERIMENTALENeutrino detectorLarge detector systems for particle and astroparticle physicBeam-line instrumentation (beam position and profile monitorbunch length monitors)Physics::Accelerator PhysicsNeutrino FactoryHigh Energy Physics::ExperimentCloud chamberNeutrinoBeam (structure)
researchProduct

Measurement of the intrinsic electron neutrino component in the T2K neutrino beam with the ND280 detector

2014

The T2K experiment has reported the first observation of the appearance of electron neutrinos in a muon neutrino beam. The main and irreducible background to the appearance signal comes from the presence in the neutrino beam of a small intrinsic component of electron neutrinos originating from muon and kaon decays. In T2K, this component is expected to represent 1.2% of the total neutrino flux. A measurement of this component using the near detector (ND280), located 280 m from the target, is presented. The charged current interactions of electron neutrinos are selected by combining the particle identification capabilities of both the time projection chambers and electromagnetic calorimeters…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyT2K experimentFísicaSolar neutrino problem3. Good healthCosmic neutrino backgroundNeutrino detectorMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino
researchProduct

Measurement of Neutrino Oscillation Parameters from Muon Neutrino Disappearance with an Off-Axis Beam

2013

The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01 x 10(20) protons on target. In the absence of neutrino oscillations, 205 +/- 17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin…

Particle physicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFluxFOS: Physical sciencesddc:500.201 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrino010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physics4. EducationHigh Energy Physics::PhenomenologyDetectorSolar neutrino problemNeutrino detectorMeasurements of neutrino speedFísica nuclearHigh Energy Physics::ExperimentNeutrino
researchProduct