0000000000537683

AUTHOR

Paul Berlin Ndjoko

Nonlinear mechanics of DNA doule strand: existence of the compact-envelope bright solitary wave

We study the nonlinear dynamics of a homogeneous DNA chain which is based on site-dependent finite stacking and pairing enthalpies. We introduce an extended nonlinear Schrödinger equation describing the dynamics of modulated wave in DNA model. We obtain envelope bright solitary waves with compact support as a solution. Analytical criteria of existence of this solution are derived. The stability of bright compactons is confirmed by numerical simulations of the exact equations of the lattice. The impact of the finite stacking energy is investigated and we show that some of these compact bright solitary waves are robust, while others decompose very quickly depending on the finite stacking para…

research product

STATISTICAL MECHANICS OF NONCLASSIC SOLITONIC STRUCTURES-BEARING DNA SYSTEM

We theoretically investigate the thermodynamic properties of modified oscillator chain proposed by Peyrard and Bishop. This model obtained by adding the quartic anharmonicity term to the coupling in the Peyrard–Bishop model is useful to model the coexistence of various phases of the molecule during the denaturation phenomenon. Within the model, the negative anharmonicity is responsible for the sharpness of calculated melting curves. We perform the transfer integral calculations to demonstrate that the model leads to a good agreement with known experimental results for DNA.

research product

Compact-envelope bright solitary wave in a DNA double strand

International audience; We study the nonlinear dynamics of a homogeneous DNA chain which is based on site-dependent finite stacking and pairing enthalpies. We introduce an extended nonlinear Schroedinger equation describing the dynamics of modulated waves in DNA model. We obtain envelope bright solitary waves with compact support as a solution. Analytical criteria of existence and stability of this solution are derived. The stability of bright compactons is confirmed by numerical simulations of the exact equations of the lattice. The impact of the fi nite stacking energy is investigated and we show that some of these compact bright solitary waves are very robust, while others decompose quic…

research product