0000000000542195
AUTHOR
Wilson
Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5×1021 protons on target
We report measurements by the T2K experiment of the parameters $\theta_{23}$ and $\Delta m^{2}_{32}$ governing the disappearance of muon neutrinos and antineutrinos in the three flavor neutrino oscillation model. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, the parameters are measured separately for neutrinos and antineutrinos. Using $7.482 \times 10^{20}$ POT in neutrino running mode and $7.471 \times 10^{20}$ POT in antineutrino mode, T2K obtained, $\sin^{2}(\theta_{23})=0.51^{+0.08}_{-0.07}$ and $\Delta m^{2}_{32} = 2.53^{+0.15}_{-0.13} \times 10^{-3}$eV$^{2}$/c$^{4}$ for neutrinos, and $\sin^{2}({\overline{\theta}}_{23})=0.4…
Observation of Electron Neutrino Appearance in a Muon Neutrino Beam
The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3$\sigma$ when compared to 4.92 $\pm$ 0.55 expected background events. In the PMNS mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles $\theta_{12}$, $\theta_{23}$, $\theta_{13}$, a mass difference $\Delta m^2_{32}$ and a CP violating phase $\delta_{\mathrm{CP}}$. In this neutrino oscillation scenario, assuming $…
Measurements of the Absolute Branching Fractions of B± →k±Xc c
A study of the two-body decays B±→XccK±, where Xcc refers to one charmonium state, is reported by the BABAR Collaboration using a data sample of 424 fb-1. The absolute determination of branching fractions for these decays are significantly improved compared to previous BABAR measurements. Evidence is found for the decay B+→X(3872)K+ at the 3σ level. The absolute branching fraction B[B+→X(3872)K+]=[2.1±0.6(stat)±0.3(syst)]×10-4 is measured for the first time. It follows that B[X(3872)→J/ψπ+π-]=(4.1±1.3)%, supporting the hypothesis of a molecular component for this resonance.