0000000000544364

AUTHOR

Alexandre Vial

showing 3 related works from this author

Optical determination and identification of organic shells around nanoparticles: application to silver nanoparticles

2013

We present a simple method to prove the presence of an organic shell around silver nanoparticles. This method is based on the comparison between optical extinction measurements of isolated nanoparticles and Mie calculations predicting the expected wavelength of the Localized Surface Plasmon Resonance of the nanoparticles with and without the presence of an organic layer. This method was applied to silver nanoparticles which seemed to be well protected from oxidation. Further experimental characterization via Surface Enhanced Raman Spectroscopy (SERS) measurements allowed to identify this protective shell as ethylene glycol. Combining LSPR and SERS measurements could thus give proof of both …

inorganic chemicalsMaterials scienceMie scatteringeducationSilver nanoparticleShell (structure)FOS: Physical sciencesNanoparticlePhysics::Optics02 engineering and technology010402 general chemistry01 natural sciencesSilver nanoparticlesurface enhanced raman spectroscopychemistry.chemical_compoundlocalized surface plasmon resonanceMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic and Molecular ClustersMie theoryGeneral Materials ScienceSurface plasmon resonancehealth care economics and organizationsPlasmonCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicstechnology industry and agricultureMaterials Science (cond-mat.mtrl-sci)Surface-enhanced Raman spectroscopy021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical scienceschemistryChemical engineering[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonicorganic shells0210 nano-technologyEthylene glycol
researchProduct

Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength

2015

International audience; We demonstrate two-color nanoemitters that enable the selection of the dominant emitting wavelength by varying the polarization of excitation light. The nanoemitters were fabricated via surface plasmon-triggered two-photon polymerization. By using two polymerizable solutions with different quantum dots, emitters of different colors can be positioned selectively in different orientations in the close vicinity of the metal nanoparticles. The dominant emission wavelength of the metal/polymer anisotropic hybrid nanoemitter thus can be selected by altering the incident polarization.

Materials sciencebusiness.industryMechanical EngineeringSurface plasmonsurface plasmonsNanophotonicsPhysics::OpticsBioengineeringGeneral Chemistryhybrid nanostructuresfluorescence spectroscopyCondensed Matter PhysicsPolarization (waves)WavelengthOpticsQuantum dotphotopolymerization[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicnanophotonicsGeneral Materials SciencebusinessAnisotropynanoemitterPlasmonExcitation
researchProduct

Two-color hybrid nano-emitters

2015

International audience

[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicComputingMilieux_MISCELLANEOUS
researchProduct