0000000000546717

AUTHOR

Alexander D. James

showing 2 related works from this author

Stratospheric aerosol-Observations, processes, and impact on climate

2016

Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have be…

geographygeography.geographical_feature_category010504 meteorology & atmospheric sciencesAir pollutionClimate changeSulfur cyclerespiratory system010502 geochemistry & geophysicsmedicine.disease_causeAtmospheric sciencescomplex mixtures01 natural sciencesAerosolchemistry.chemical_compoundGeophysicschemistryVolcano13. Climate actionAtmospheric chemistryClimatologymedicineEnvironmental scienceClimate model0105 earth and related environmental sciencesCarbonyl sulfideReviews of Geophysics
researchProduct

Particle shapes and infrared extinction spectra of nitric acid dihydrate crystals: Optical constants of the β-NAD modification

2023

Satellite- and aircraft-based mid-infrared measurements of polar stratospheric clouds (PSCs) have provided spectroscopic evidence for the presence of β-NAT (nitric acid trihydrate) particles. Metastable nitric acid hydrate phases such as α-NAT and α-NAD (nitric acid dihydrate) have been frequently observed in laboratory experiments, but not yet detected as a constituent of PSCs in atmospheric measurements. As for the β-NAD modification, its formation was first observed in X-ray diffraction measurements when the low-temperature α-NAD phase was warmed to a temperature above 210 K. Its infrared spectrum has been reported, but so far no optical constants have been de…

researchProduct