Stratospheric aerosol-Observations, processes, and impact on climate
Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have be…
Detection of reactive nitrogen containing particles in the tropopause region? Evidence for a tropical nitric acid trihydrage (NAT) belt
The detection of nitric acid trihydrate (NAT, HNO<sub>3</sub>&times;3H<sub>2</sub>O) particles in the tropical transition layer (TTL) harmonizes our understanding of polar stratospheric cloud formation. Large reactive nitrogen (NO<sub>y</sub>) containing particles were observed on 8 August 2006 by instruments onboard the high altitude research aircraft M55-Geophysica near and below the tropical tropopause. The particles, most likely NAT, have diameters less than 6 &mu;m and concentrations below 10<sup>-4</sup> cm<sup>&minus;3</sup>. The NAT particle layer was repeatedly detected at altitudes between 15.1 and 17.5 km ove…