0000000000546906

AUTHOR

Federica Calevro

showing 5 related works from this author

The transposable element-rich genome of the cereal pest Sitophilus oryzae

2021

AbstractBackgroundThe rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions.ResultsWe sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families a…

2. Zero hungerGeneticsTransposable element0303 health sciencesSodalisfood.ingredientEndosymbiosisbusiness.industrySitophilusPest controlfood and beveragesBiologybiology.organism_classificationGenome03 medical and health sciences0302 clinical medicineRice weevilfoodPEST analysisbusiness030217 neurology & neurosurgery030304 developmental biology
researchProduct

Additional file 1 of The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic p…

2020

Additional file 1: Figures. S1-S22, Table S1-S20, Methods and Results. Figure S1. Mitochondrial genome view of grape phylloxera. Figure S2. Proportion of transposable elements (TE) in the genome. Figure S3. GO terms of phylloxera-specific genes. Figure S4. Enriched GO terms in the phylloxera genome with and without TEs. Figure S5. Gene gain/loss at different nodes or branches. Figure S6. Species phylogenetic tree based on insect genomes and the transcriptomes of Planoccoccus citri and Adelges tsugae. Figure S7. Diagram of the gap-filling and annotation process. Figure S8. Urea cycle in D. vitifoliae and A. pisum. Figure S9. IMD immune pathway in D. vitifoliae.Figure S10. Phylogenetic tree o…

2. Zero hunger
researchProduct

Additional file 1 of The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic p…

2020

Additional file 1: Figures. S1-S22, Table S1-S20, Methods and Results. Figure S1. Mitochondrial genome view of grape phylloxera. Figure S2. Proportion of transposable elements (TE) in the genome. Figure S3. GO terms of phylloxera-specific genes. Figure S4. Enriched GO terms in the phylloxera genome with and without TEs. Figure S5. Gene gain/loss at different nodes or branches. Figure S6. Species phylogenetic tree based on insect genomes and the transcriptomes of Planoccoccus citri and Adelges tsugae. Figure S7. Diagram of the gap-filling and annotation process. Figure S8. Urea cycle in D. vitifoliae and A. pisum. Figure S9. IMD immune pathway in D. vitifoliae.Figure S10. Phylogenetic tree o…

2. Zero hunger
researchProduct

The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest

2020

Background: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. Results: Using a combination of…

0106 biological sciencesFil·loxeraPhysiology[SDV]Life Sciences [q-bio]Introduced speciesPlant Science01 natural sciencesGenomeGene duplicationsStructural BiologyVitislcsh:QH301-705.5ComputingMilieux_MISCELLANEOUS2. Zero hunger0303 health scienceseducation.field_of_studyHost plant interactionsGenomeEndosymbiosisbiologyfood and beveragesBiological SciencesBiological EvolutionGeneral Agricultural and Biological SciencesRootstockInfectionDaktulosphaira vitifoliaeBiotechnologyResearch ArticlePopulation010603 evolutionary biologyGeneral Biochemistry Genetics and Molecular BiologyHemiptera03 medical and health sciencesGeneticsInsect pestsAnimalsPlagues d'insectesAdaptationBiological invasionsGenomeseducationPhylloxeraEcology Evolution Behavior and Systematics030304 developmental biologyObligateHuman GenomeViticulturaCell Biology15. Life on landbiology.organism_classificationBiologicalEffectorsClimate Actionlcsh:Biology (General)13. Climate actionEvolutionary biologyArthropod genomesPhylloxeraAdaptationIntroduced SpeciesInsectAnimal DistributionDevelopmental Biology
researchProduct

A genomic reappraisal of symbiotic function in the aphid/Buchnera symbiosis: reduced transporter sets and variable membrane organisations.

2011

International audience; Buchnera aphidicola is an obligate symbiotic bacterium that sustains the physiology of aphids by complementing their exclusive phloem sap diet. In this study, we reappraised the transport function of different Buchnera strains, from the aphids Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistaciae and Cinara cedri, using the re-annotation of their transmembrane proteins coupled with an exploration of their metabolic networks. Although metabolic analyses revealed high interdependencies between the host and the bacteria, we demonstrate here that transport in Buchnera is assured by low transporter diversity, when compared to free-living bacteria, being mostly bas…

multidisciplinary scienceslcsh:MedicinePlant ScienceinterdépendanceBiochemistryTransmembrane Transport ProteinsBacterial Physiologylcsh:ScienceIntegral membrane proteinGeneticsbactérie0303 health sciencesPlant PestsMultidisciplinaryMicroscopy ConfocalbiologyMembrane transport protein030302 biochemistry & molecular biologybuchnera aphidicolamicroscopy confocalGenomicsHydrogen-Ion ConcentrationTransmembrane proteinFunctional GenomicsBiochemistrysymbiosis geneticsMetabolic PathwaysMetabolic Networks and PathwaysResearch Articlecell membrane ultrastructurescience and technologyMicrobiology03 medical and health sciencesMetabolic NetworksBuchneraAnimalsSymbiosisBiology030304 developmental biologyObligateCell Membranelcsh:RProteinsComputational BiologyMembrane Transport ProteinsBiological TransportBacteriologyPlant Pathologybiochemical phenomena metabolism and nutritionbiology.organism_classificationAcyrthosiphon pisumTransmembrane ProteinsaphidsMESH: SymbioseMetabolismMembrane proteinGenes Bacterialbiology.proteinlcsh:QBuchnerabuchnera aphidicola;aphids;microscopy confocal;symbiosis genetics;cell membrane ultrastructure;multidisciplinary sciences;science and technologyFunction (biology)[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisPLoS ONE
researchProduct