0000000000548319

AUTHOR

Béatrice Desvergne

showing 3 related works from this author

SOCS3 transactivation by PPARγ prevents IL-17-driven cancer growth.

2013

Abstract Activation of the transcription factor PPARγ by the n-3 fatty acid docosahexaenoic acid (DHA) is implicated in controlling proinflammatory cytokine secretion, but the intracellular signaling pathways engaged by PPARγ are incompletely characterized. Here, we identify the adapter-encoding gene SOCS3 as a critical transcriptional target of PPARγ. SOCS3 promoter binding and gene transactivation by PPARγ was associated with a repression in differentiation of proinflammatory T-helper (TH)17 cells. Accordingly, TH17 cells induced in vitro displayed increased SOCS3 expression and diminished capacity to produce interleukin (IL)-17 following activation of PPARγ by DHA. Furthermore, naïve CD4…

CD4-Positive T-LymphocytesCancer ResearchAngiogenesisMammary Neoplasms Experimental/genetics/pathology/prevention & controlSuppressor of Cytokine Signaling Proteinsddc:616.07BioinformaticsTransactivationMice0302 clinical medicineTumor Burden/drug effects/geneticsSOCS3Docosahexaenoic Acids/administration & dosage/pharmacologyPromoter Regions GeneticMice Knockout0303 health sciencesMice Inbred BALB CChemistryReverse Transcriptase Polymerase Chain ReactionInterleukin-17InterleukinCell DifferentiationCell biologyTumor BurdenOncology030220 oncology & carcinogenesisFemaleRNA InterferenceInterleukin 17Th17 Cells/drug effects/metabolismTranscriptional ActivationDocosahexaenoic AcidsBlotting WesternMice NudeCD4-Positive T-Lymphocytes/drug effects/metabolismProinflammatory cytokine03 medical and health sciencesSuppressor of Cytokine Signaling Proteins/genetics/metabolismCell Line TumorAnimalsTranscription factor030304 developmental biologyMammary Neoplasms ExperimentalPromoter Regions Genetic/geneticsDietMice Inbred C57BLPPAR gammaInterleukin-17/metabolismCell cultureSuppressor of Cytokine Signaling 3 ProteinCell Differentiation/drug effectsPPAR gamma/agonists/genetics/metabolismTh17 CellsCancer research
researchProduct

Glycogen synthase 2 is a novel target gene of peroxisome proliferator-activated receptors.

2007

International audience; Glycogen synthase 2 (Gys-2) is the ratelimiting enzyme in the storage of glycogen in liver and adipose tissue, yet little is known about regulation of Gys-2 transcription. The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of lipid and glucose metabolism and might be hypothesized to govern glycogen synthesis as well. Here, we show that Gys-2 is a direct target gene of PPARalpha, PPARbeta/delta and PPARgamma. Expression of Gys-2 is significantly reduced in adipose tissue of PPARalpha-/-, PPARbeta/delta-/- and PPARgamma+/- mice. Furthermore, synthetic PPARbeta/delta, and gamma agonists markedly up-regulate Gys-2…

Animals; Chromatin/ultrastructure; DNA Primers; Gene Expression Regulation Enzymologic; Glycogen Synthase/genetics; Hepatocytes/enzymology; Hepatocytes/physiology; Mice; Mice Knockout; Peroxisome Proliferator-Activated Receptors/deficiency; Peroxisome Proliferator-Activated Receptors/genetics; Polymerase Chain Reaction; RNA/genetics; RNA/isolation & purification; Rats; Transcription GeneticTranscription GeneticPeroxisome proliferator-activated receptorMESH : HepatocytesPPREPolymerase Chain Reactionadipose-tissuePPARMESH: HepatocytesMice0302 clinical medicineMESH: Animals610 Medicine & healthchemistry.chemical_classificationRegulation of gene expression0303 health sciencesGlycogenglycogen-synthaseChromatinGlycogen Synthase030220 oncology & carcinogenesisMESH : DNA PrimersmicroarrayMESH: DNA Primersmedicine.medical_specialtyHealth aging / healthy living [IGMD 5]fatty-acid oxidationliverGene Expression Regulation EnzymologicMESH: Chromatin03 medical and health sciencesskeletal-muscleGlycogen synthaseMolecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyHNF4αVLAGPharmacologybeta/deltaMESH: Polymerase Chain Reactionresponse elementsMESH : Peroxisome Proliferator-Activated ReceptorsEndocrinologychemistryMicrobial pathogenesis and host defense [UMCN 4.1]Response elementPeroxisome Proliferator-Activated ReceptorsAdipose tissueMESH: Peroxisome Proliferator-Activated Receptorsin-vivoMESH: Mice KnockoutTransactivationchemistry.chemical_compoundVoeding Metabolisme en GenomicaMESH : RNAMESH : Polymerase Chain ReactionMice KnockoutMESH : ChromatinMESH : RatsMESH: Gene Expression Regulation EnzymologicMetabolism and Genomicsadipose tissueMetabolisme en GenomicaMolecular MedicineNutrition Metabolism and GenomicsMESH : Glycogen SynthaseResearch ArticleMESH: Ratsglycogen synthase 2610 Medicine & healthBiologyMESH : Gene Expression Regulation EnzymologicCellular and Molecular NeuroscienceVoedingMESH: RNAInternal medicineMESH : MicemedicineAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyTranscription factorMESH: Micealpha ppar-alpha030304 developmental biologyNutritionDNA PrimersMESH: Glycogen SynthaseMESH: Transcription GeneticMESH : Transcription GeneticCell BiologyRatsgene transcriptionbiology.proteinHepatocytesRNAMESH : Mice KnockoutgammaMESH : Animalsmetabolism
researchProduct

Transcriptional Regulation by Triiodothyronine of the UDP-glucuronosyltransferase Family 1 Gene Complex in Rat Liver

1997

Abstract This study demonstrates that the expression of the phenol UDP-glucuronosyltransferase 1 gene (UGT1A1) is regulated at the transcriptional level by thyroid hormone in rat liver. Following 3,5,3′-triiodo-l-thyronine (T3) stimulation in vivo, there is a gradual increase in the amount of UGT1A1 mRNA with maximum levels reached 24 h after treatment. In comparison, induction with the specific inducer, 3-methylcholanthrene (3-MC), results in maximal levels of UGT1A1 mRNA after 8 h of treatment. In primary hepatocyte cultures, the stimulatory effect of both T3 and 3-MC is also observed. This induction is suppressed by the RNA synthesis inhibitor actinomycin D, indicating that neither induc…

Messenger RNAAromatic hydrocarbon receptorStimulationCell BiologyMRNA stabilizationCycloheximideBiologydigestive systemBiochemistryMolecular biologychemistry.chemical_compoundchemistryMethylcholanthreneTranscriptional regulationInducerMolecular BiologyJournal of Biological Chemistry
researchProduct