0000000000548373

AUTHOR

Glenn Dranoff

showing 4 related works from this author

Consensus nomenclature for CD8(+) T cell phenotypes in cancer

2015

International audience; Whereas preclinical investigations and clinical studies have established that CD8+ T cells can profoundly affect cancer progression, the underlying mechanisms are still elusive. Challenging the prevalent view that the beneficial effect of CD8+ T cells in cancer is solely attributable to their cytotoxic activity, several reports have indicated that the ability of CD8+ T cells to promote tumor regression is dependent on their cytokine secretion profile and their ability to self-renew. Evidence has also shown that the tumor microenvironment can disarm CD8+ T cell immunity, leading to the emergence of dysfunctional CD8+ T cells. The existence of different types of CD8+ T…

senescenceT cellOncology and CarcinogenesisImmunology[SDV.CAN]Life Sciences [q-bio]/CancerBiologyCD8+ T cellsIFN gammaanergy03 medical and health sciencesstemness0302 clinical medicineImmune system[SDV.CAN] Life Sciences [q-bio]/Cancerexhaustionmedicine2.1 Biological and endogenous factorsImmunology and AllergyCytotoxic T cellAetiologyPoint of ViewCancer030304 developmental biologyCD8+ T cells; IFNγ; anergy; anticancer immunity; cytotoxicity; effector; exhaustion; senescence; stemness0303 health sciencesTumor microenvironmentCD8(+) T cellsCancermedicine.diseasePhenotype3. Good healthanticancer immunitymedicine.anatomical_structureeffectorOncologyImmunologycytotoxicityCytokine secretionCD8030215 immunologyIFNγ
researchProduct

Activation of the PD-1 Pathway Contributes to Immune Escape in EGFR-Driven Lung Tumors

2013

Abstract The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of m…

Lung NeoplasmsT-LymphocytesT cellProgrammed Cell Death 1 ReceptorMice TransgenicLymphocyte ActivationB7-H1 AntigenArticleCell LineProinflammatory cytokineMiceCarcinoma Non-Small-Cell LungTumor MicroenvironmentmedicineAnimalsHumansCytotoxic T cellEpidermal growth factor receptorLung cancerEGFR inhibitorsTumor microenvironmentbiologyOncogenesmedicine.diseaseErbB ReceptorsGene Expression Regulation NeoplasticMice Inbred C57BLmedicine.anatomical_structureOncologyTumor EscapeImmunologyCancer researchbiology.proteinCytokinesTumor EscapeSignal TransductionCancer Discovery
researchProduct

Abstract B290: Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors.

2013

Abstract The recent clinical success of therapeutic blockade of the immune checkpoint Programmed Death (PD)-1 in advanced lung cancer patients suggests that mechanisms of immune escape may contribute to lung tumor pathogenesis. We identified a correlation between Epidermal Growth Factor Receptor (EGFR) pathway activation and a gene signature indicative of immunosuppression manifested by upregulation of PD-1, PD-L1, cytotoxic T lymphocyte antigen-4 (CTLA-4) and multiple tumor-promoting inflammatory cytokines. Accordingly, we identified a decrease in the number of cytotoxic T cells and an increase in markers of T cell exhaustion in genetically engineered mouse models (GEMMs) of EGFR-driven lu…

Cancer ResearchTumor microenvironmentbiologyCell growthT cellCancermedicine.diseaseImmune checkpointmedicine.anatomical_structureOncologyImmunologybiology.proteinmedicineCytotoxic T cellEpidermal growth factor receptorLung cancerMolecular Cancer Therapeutics
researchProduct

Interleukin-17A Promotes Lung Tumor Progression through Neutrophil Attraction to Tumor Sites and Mediating Resistance to PD-1 Blockade

2017

Abstract Introduction Proinflammatory cytokine interleukin-17A (IL-17A) is overexpressed in a subset of patients with lung cancer. We hypothesized that IL-17A promotes a protumorigenic inflammatory phenotype and inhibits antitumor immune responses. Methods We generated bitransgenic mice expressing a conditional IL-17A allele along with conditional Kras G12D and performed immune phenotyping of mouse lungs, a survival analysis, and treatment studies with antibodies either blocking programmed cell death 1 (PD-1) or IL-6 or depleting neutrophils. To support the preclinical findings, we analyzed human gene expression data sets and immune profiled patient lung tumors. Results Tumors in IL-17:Kras…

0301 basic medicinePulmonary and Respiratory MedicineChemokineLung NeoplasmsNeutrophilsLymphocytemedicine.medical_treatmentProgrammed Cell Death 1 ReceptorGene ExpressionMice TransgenicGranulocytemedicine.disease_causeArticleProinflammatory cytokineProto-Oncogene Proteins p21(ras)Mice03 medical and health sciencesImmune systemAnimalsHumansMedicineLung cancerbiologybusiness.industryInterleukin-17medicine.disease030104 developmental biologymedicine.anatomical_structureCytokineOncologyMutationImmunologyDisease Progressionbiology.proteinKRASbusinessJournal of Thoracic Oncology
researchProduct