0000000000548383
AUTHOR
Benoît Van Den Eynde
Consensus nomenclature for CD8(+) T cell phenotypes in cancer
International audience; Whereas preclinical investigations and clinical studies have established that CD8+ T cells can profoundly affect cancer progression, the underlying mechanisms are still elusive. Challenging the prevalent view that the beneficial effect of CD8+ T cells in cancer is solely attributable to their cytotoxic activity, several reports have indicated that the ability of CD8+ T cells to promote tumor regression is dependent on their cytokine secretion profile and their ability to self-renew. Evidence has also shown that the tumor microenvironment can disarm CD8+ T cell immunity, leading to the emergence of dysfunctional CD8+ T cells. The existence of different types of CD8+ T…
Classification of current anticancer immunotherapies.
© 2014. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
A tyrosinase peptide presented by HLA-B35 is recognized on a human melanoma by autologous cytotoxic T lymphocytes
We previously described different cytotoxic T lymphocyte (CTL) clones isolated from the blood lymphocytes of a melanoma patient after in vitro stimulation with autologous tumor cells. These CTL clones recognized at least 2 distinct antigens on the melanoma cells. Here, we show that one of them consists of a peptide derived from tyrosinase and presented by HLA-B35. The peptide is 9 amino acids long and has the sequence LPSSADVEF. It can be presented by the 2 major B35 allelic subtypes, B*3501 and B*3503. As HLA-B35 is one of the most frequent HLA-B specificities, being present in about 20% of Caucasian individuals, it may be a useful target for peptide-based immunotherapy of melanoma.