0000000000555562

AUTHOR

Sergi Plana-ruiz

0000-0002-4047-8362

showing 12 related works from this author

Topochemical Reduction of La2NiO3F2: The First Ni-Based Ruddlesden–Popper n = 1 T′-Type Structure and the Impact of Reduction on Magnetic Ordering

2020

Within this study, we show that a broad range of reduced phases La2NiO3F2−Δ can be derived from Ruddlesden–Popper-type La2NiO3F2 using a reductive topochemical defluorination method based on reacti...

Reduction (complexity)Range (particle radiation)CrystallographyMaterials scienceGeneral Chemical EngineeringMaterials Chemistry02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology0210 nano-technology01 natural sciences0104 chemical sciencesChemistry of Materials
researchProduct

Quasi-parallel precession diffraction: Alignment method for scanning transmission electron microscopes.

2018

Abstract A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on …

010302 applied physicsDiffractionMaterials sciencebusiness.industryDetector02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesDark field microscopyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionOpticsElectron diffractionProjectorlaw0103 physical sciencesPrecessionElectron microscope0210 nano-technologybusinessInstrumentationBeam (structure)Ultramicroscopy
researchProduct

Selective Synthesis of Monodisperse CoO Nanooctahedra as Catalysts for Electrochemical Water Oxidation

2020

Thermal decomposition is a promising route for the synthesis of metal oxide nanoparticles because size and morphology can be tuned by minute control of the reaction variables. We synthesized CoO nanooctahedra with diameters of ∼48 nm and a narrow size distribution. Full control over nanoparticle size and morphology could be obtained by controlling the reaction time, surfactant ratio, and reactant concentrations. We show that the particle size does not increase monotonically with time or surfactant concentration but passes through minima or maxima. We unravel the critical role of the surfactants in nucleation and growth and rationalize the observed experimental trends in accordance with simu…

Materials scienceThermal decompositionDispersityOxygen evolutionNucleationNanoparticle02 engineering and technologySurfaces and Interfaces010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectrochemistry01 natural sciences0104 chemical sciencesCatalysisChemical engineeringElectrochemistryGeneral Materials ScienceParticle size0210 nano-technologySpectroscopyLangmuir
researchProduct

Iron Oxide Superparticles with Enhanced MRI Performance by Solution Phase Epitaxial Growth

2018

Organized three-dimensional (3D) nanomaterial architectures are promising candidates for applications in optoelectronics, catalysis, or theranostics owing to their anisotropy and advanced structural features that allow tailoring their physical and chemical properties. The synthesis of such complex but well-organized nanomaterials is difficult because the interplay of interfacial strain and facet-specific reactivity must be considered. Especially the magnetic anisotropy with controlled size and morphology plays a decisive role for applications like magnetic resonance imaging (MRI) and advanced data storage. We present a solution phase seed mediated synthesis of colloidal, well dispersible ir…

Materials scienceGeneral Chemical EngineeringIron oxideMaghemiteNanotechnology02 engineering and technologyGeneral ChemistryHematiteengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesNanomaterialschemistry.chemical_compoundMagnetic anisotropychemistryTransmission electron microscopyvisual_artMaterials Chemistryvisual_art.visual_art_mediumengineeringNanorod0210 nano-technologyAnisotropyChemistry of Materials
researchProduct

Fast-ADT: A fast and automated electron diffraction tomography setup for structure determination and refinement.

2020

Abstract Electron crystallography has focused in the last few years on the analyses of microcrystals, mainly organic compounds, triggered by recent publications on acquisition methods based on direct detection cameras and continuous stage tilting. However, the main capability of a transmission electron microscope is the access to features at the nanometre scale. In this context, a new acquisition method, called fast and automated diffraction tomography (Fast-ADT), has been developed in form of a general application in order to get the most of the diffraction space from a TEM. It consists of two subsequent tilt scans of the goniometric stage; one to obtain a crystal tracking file and a secon…

010302 applied physicsDiffractionMaterials scienceMicroscopeElectron crystallographybusiness.industryContext (language use)02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionDiffraction tomographyOpticsElectron diffractionlawGoniometer0103 physical sciences0210 nano-technologybusinessInstrumentationPowder diffractionUltramicroscopy
researchProduct

Automated electron diffraction tomography – development and applications

2019

Electron diffraction tomography, a potential method for structure analysis of nanocrystals, and, in more detail, the strategies to use automated diffraction tomography (ADT) technique are described. Examples of ADT application are discussed according to the material class.

Structure analysisAb initio02 engineering and technologyCrystal structure010402 general chemistry01 natural scienceslaw.inventiondisorder analysissingle-crystal structure analysislawMaterials ChemistrynanomaterialsLead Articlesbusiness.industryChemistryElectron crystallographyMetals and Alloys021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic Materialselectron crystallographyElectron diffractionOptoelectronicselectron diffraction tomographyTomographyElectron microscope0210 nano-technologybusinessCrystal twinningActa Crystallographica Section B Structural Science, Crystal Engineering and Materials
researchProduct

The Elusive Structure of Magadiite, Solved by 3D Electron Diffraction and Model Building

2021

In addition to a great swelling ability, layered silicates also allow the functionalization of their interlayer region to form various robust green materials that are used as CO2 adsorbents, drug c...

Materials scienceGeneral Chemical Engineering02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAdsorptionChemical engineeringElectron diffractionGreen materialsMaterials ChemistrymedicineSurface modificationSwellingmedicine.symptom0210 nano-technologyModel buildingChemistry of Materials
researchProduct

Controlling the Morphology of Au–Pd Heterodimer Nanoparticles by Surface Ligands

2018

Controlling the morphology of noble-metal nanoparticles is mandatory to tune specific properties such as catalytic and optical behavior. Heterodimers consisting of two noble metals have been synthesized, so far mostly in aqueous media using selective surfactants or chemical etching strategies. We report a facile synthesis for Au@Pd and Pd@Au heterodimer nanoparticles (NPs) with morphologies ranging from segregated domains (heteroparticles) to core-shell structures by applying a seed-mediated growth process with Au and Pd seed nanoparticles in 1-octadecene (ODE), which is a high-boiling organic solvent. The as-synthesized oleylamine (OAm) functionalized Au NPs led to the formation of OAm-Au@…

Inorganic ChemistryMorphology (linguistics)Chemical engineeringChemistryNanoparticle02 engineering and technologyPhysical and Theoretical Chemistry010402 general chemistry021001 nanoscience & nanotechnology0210 nano-technology01 natural sciences0104 chemical sciencesCatalysisInorganic Chemistry
researchProduct

Calcium Sulfate Nanoparticles with Unusual Dispersibility in Organic Solvents for Transparent Film Processing

2018

Calcium sulfate is one of the most important construction materials. Today it is employed as high-performance compound in medical applications and cement mixtures. We report a synthesis for calcium sulfate nanoparticles with outstanding dispersibility properties in organic solvents without further functionalization. The nanoparticles (amorphous with small γ-anhydrite crystallites, 5–50 nm particle size) form long-term stable dispersions in acetone without any sign of precipitation. 1H NMR spectroscopic techniques and Fourier-transform infrared spectroscopy (FTIR) reveal absorbed 2-propanol on the particle surfaces that induce the unusual dispersibility. Adding water to the nanoparticle disp…

Materials sciencePrecipitation (chemistry)NanoparticleInfrared spectroscopy02 engineering and technologySurfaces and Interfaces010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical scienceslaw.inventionBassaniteChemical engineeringlawElectrochemistryParticleGeneral Materials ScienceCrystalliteCrystallizationFourier transform infrared spectroscopy0210 nano-technologySpectroscopyLangmuir
researchProduct

New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy.

2020

RUB-5 and its related hydrous layer silicate RUB-6 were synthesized in the 1990s, but so far their structures have remained unknown due to their low crystallinity and disorder. The combination of 3D electron diffraction, X-ray powder diffraction, high-resolution transmission electron microscopy, structural modelling and diffraction simulations has enabled a comprehensive description of these two nanomaterials, revealng a new framework topology and a unique silica polymorph.

DiffractionMaterials sciencecomputational modellingStackinginorganic materials02 engineering and technology010402 general chemistry01 natural sciencesBiochemistrydiffuse scatteringMetalexit wave reconstructionchemistry.chemical_compoundpolymorph predictionframework-structured solidsGeneral Materials ScienceZeolitelcsh:Sciencestacking faultsElectron crystallographymicroporous materialsGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsResearch PapersNanocrystalline materialSilicate3D electron diffraction0104 chemical sciencesSilanolCrystallographyelectron crystallographychemistryvisual_artvisual_art.visual_art_mediumlcsh:Q0210 nano-technologyIUCrJ
researchProduct

CSD 1995979: Experimental Crystal Structure Determination

2020

Related Article: Yaşar Krysiak, Bernd Marler, Bastian Barton, Sergi Plana-Ruiz, Hermann Gies, Reinhard B. Neder, Ute Kolb|2020|IUCrJ|7|522|doi:10.1107/s2052252520003991

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1991689: Experimental Crystal Structure Determination

2020

Related Article: Yaşar Krysiak, Bernd Marler, Bastian Barton, Sergi Plana-Ruiz, Hermann Gies, Reinhard B. Neder, Ute Kolb|2020|IUCrJ|7|522|doi:10.1107/s2052252520003991

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[1-(piperidin-4-yl)methanamine 31111131717212323313745-dodecakis(silyloxy)heptacyclo[17.13.3.3115.339.32531.1713.12127]icosasiloxane-5579151925272929343437414145-hexadecol]Cell ParametersExperimental 3D Coordinates
researchProduct