0000000000555760

AUTHOR

Paul J. Tackley

A free plate surface and weak oceanic crust produce single-sided subduction on Earth

[1] Earth’s lithosphere is characterized by the relative movement of almost rigid plates as part of global mantle convection. Subduction zones on present-day Earth are strongly asymmetric features composed of an overriding plate above a subducting plate that sinks into the mantle. While global self-consistent numerical models of mantle convection have reproduced some aspects of plate tectonics, the assumptions behind these models do not allow for realistic single-sided subduction. Here we demonstrate that the asymmetry of subduction results from two major features of terrestrial plates: (1) the presence of a free deformable upper surface and (2) the presence of weak hydrated crust atop subd…

research product

A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the ‘sticky air’ method

SUMMARY Calculating surface topography in geodynamic models is a common numerical problem. Besides other approaches, the so-called ‘sticky air’ approach has gained interest as a free-surface proxy at the top boundary. The often used free slip condition is thereby vertically extended by introducing a low density, low viscosityfluid layer. This allows the air/crust interface to behave in a similar manner to a true free surface. We present here a theoretical analysis that provides the physical conditions under which the sticky air approach is a valid approximation of a true free surface. Two cases are evaluated that characterize the evolution of topography on different timescales: (1) isostati…

research product