0000000000557517

AUTHOR

H.t. Yu

showing 4 related works from this author

Accelerator testing of the general antiparticle spectrometer; a novel approach to indirect dark matter detection

2005

We report on recent accelerator testing of a prototype general antiparticle spectrometer (GAPS). GAPS is a novel approach for indirect dark matter searches that exploits the antideuterons produced in neutralino-neutralino annihilations. GAPS captures these antideuterons into a target with the subsequent formation of exotic atoms. These exotic atoms decay with the emission of X-rays of precisely defined energy and a correlated pion signature from nuclear annihilation. This signature uniquely characterizes the antideuterons. Preliminary analysis of data from a prototype GAPS in an antiproton beam at the KEK accelerator in Japan has confirmed the multi-X-ray/pion star topology and indicated X-…

PhysicsAntiparticleAnnihilationSpectrometerAstrophysics (astro-ph)Dark matterFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsPreliminary analysisNuclear physicsAntiproton beamPionHigh Energy Physics::ExperimentNuclear ExperimentExotic atomJournal of Cosmology and Astroparticle Physics
researchProduct

Current status and future plans for the general antiparticle spectrometer (GAPS)

2008

著者人数: 13名

PhysicsAtmospheric ScienceParticle physicsAntiparticleSpectrometerAstrophysics::High Energy Astrophysical PhenomenaDark matterAerospace EngineeringAstronomy and AstrophysicsCosmic rayParticle acceleratorlaw.inventionNuclear physicsGeophysicsPionSpace and Planetary SciencelawGeneral Earth and Planetary SciencesCurrent (fluid)Nuclear ExperimentExotic atomAdvances in Space Research
researchProduct

Indirect Dark Matter Search with Antideuterons: Progress and Future Prospects for General Antiparticle Spectrometer (GAPS)

2007

We report on recent accelerator testing of a prototype general antiparticle spectrometer (GAPS). GAPS is a novel approach for indirect dark matter searches that exploits the antideuterons produced in neutralino-neutralino annihilations. Many supersymmetry models, as well as other models based on extra dimensions, predict a primary antideuteron flux from dark matter annihilation that is much greater than the secondary and tertiary background sources at low energies. The GAPS method involves capturing antiparticles in a target material into excited energy states. The X-rays that are emitted as the antiparticle cascades to lower energy states before the exotic atom decays serve as a fingerprin…

PhysicsNuclear and High Energy PhysicsParticle physicsAntiparticleAnnihilationSpectrometerDark matterElementary particleAtomic and Molecular Physics and OpticsNuclear physicsExtra dimensionsAntimatterHigh Energy Physics::ExperimentExotic atomNuclear Physics B - Proceedings Supplements
researchProduct

Antideuterons as an indirect dark matter signature: design and preparation for a balloon-born GAPS experiment

2008

The General Antiparticle Spectrometer (GAPS) exploits low energy antideuterons produced in neutralino-neutralino annihilations as an indirect dark matter (DM) signature that is effectively free from background. When an antiparticle is captured by a target material, it forms an exotic atom in an excited state which quickly decays by emitting X-rays of precisely defined energy and a correlated pion signature from nuclear annihilation. We have successfully demonstrated the GAPS method in an accelerator environment and are currently planning a prototype flight from Japan for 2009. This will lead to a long duration balloon (LDB) mission that will complement existing and planned direct DM searche…

PhysicsHistoryAntiparticleAnnihilationSpectrometerDetectorDark matterTracking (particle physics)Computer Science ApplicationsEducationNuclear physicsHigh Energy Physics::ExperimentEnergy (signal processing)Exotic atomJournal of Physics: Conference Series
researchProduct