0000000000559868
AUTHOR
Jéro^me Rodriguez
Relativistically Smeared Iron Lines in the Spectra of Bright NS LMXB
We present preliminary results of a study on three bright accreting low-mass X-ray binaries hosting a neutron star, based on XMM-Newton observations. These sources (GX 340+0, GX 349+2 and SAX J1808.4-3658) show a broad Fe K alpha iron line in their spectra. This feature can be well described by relativistic line profile in each case; the good spectral resolution of the EPIC/PN and the high statistics spectra allow to put very good constraints on the disk geometry and ionization stage of the reflecting matter.
Background Rejection of Charged Particles in the Simbol-X Telescope: Preliminary Study of Protons Scattering
X-ray telescopes equipped with focusing optics in high eccentric orbit, as e.g. Newton-XMM and Chandra, showed a degradation of the detector performance and an important increase of the noise due to soft protons with energy between a few tens of keV and a few MeV, that are focused on the detector through the mirror module. It should be noted that the focusing of the protons by Wolter optics was an unexpected phenomenon. In Simbol-X a magnetic diverter will be implemented to deflect protons, in order to reduce the flux of charged particles impinging upon the focal plane. Obviously the design of the diverter should take into consideration the protons distribution at the exit of the mirror mod…
Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements
The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.
Simbol-X Mirror Module Thermal Shields: I-Design and X-Ray Transmission
The Simbol‐X mission is designed to fly in formation flight configuration. As a consequence, the telescope has both ends open to space, and thermal shielding at telescope entrance and exit is required to maintain temperature uniformity throughout the mirrors. Both mesh and meshless solutions are presently under study for the shields. We discuss the design and the X‐ray transmission.