0000000000560618

AUTHOR

Louise Karlsson

Blood-brain barrier penetration of the enantiomers of venlafaxine and its metabolites in mice lacking P-glycoprotein

According to in vitro studies the enantiomers of venlafaxine display different degrees of serotonin and noradrenaline reuptake inhibition. Therefore, clarification of the enantiomeric drug distribution between serum and brain is highly warranted. To elucidate if P-glycoprotein (P-gp) in a stereoselective manner transports venlafaxine and its metabolites out of the brain we used abcb1ab double-knockout mice that do not express P-gp. A single dose of racemic venlafaxine (10 mg/kg bw) was intraperitoneally injected to knockout (-/-) and wildtype (+/+) mice. Serum and brain samples were collected 1, 3, 6 and 9 h following drug administration for analysis by LC/MS/MS. One to six hours post-dose,…

research product

Altered brain concentrations of citalopram and escitalopram in P-glycoprotein deficient mice after acute and chronic treatment

Background: According to both in vitro and in vivo data P-glycoprotein (P-gp) may restrict the uptake of several antidepressants into the brain, thus contributing to the poor success rate of current antidepressant therapies. The therapeutic activity of citalopram resides in the Senantiomer, whereas the R-enantiomer is practically devoid of serotonin reuptake potency. To date, no in vivo data are available that address whether the enantiomers of citalopram and its metabolites are substrates of P-gp. Methods: P-gp knockout (abcb1ab (-/-)) and wild-type (abcb1ab (+/+)) mice underwent acute (single-dose) and chronic (two daily doses for 10 days) treatment with citalopram (10 mg/kg) or escitalop…

research product