0000000000561693
AUTHOR
M.y. Lobachev
Harmonic balance analysis of pull-in range and oscillatory behavior of third-order type 2 analog PLLs
The most important design parameters of each phase-locked loop (PLL) are the local and global stability properties, and the pull-in range. To extend the pull-in range, engineers often use type 2 PLLs. However, the engineering design relies on approximations which prevent a full exploitation of the benefits of type 2 PLLs. Using an exact mathematical model and relying on a rigorous mathematical thinking this problem is revisited here and the stability and pull-in properties of the third-order type 2 analog PLLs are determined. Both the local and global stability conditions are derived. As a new idea, the harmonic balance method is used to derive the global stability conditions. That approach…
О проблеме Гарднера для систем управления фазовой автоподстройкой частоты
This report shows the possibilities of solving the Gardner problem of determining the lock-in range for multidimensional phase-locked loops systems. The development of analogs of classical stability criteria for the cylindrical phase space made it possible to obtain analytical estimates of the lock-in range for third-order system. peerReviewed
On the Gardner Problem for the Phase-Locked Loops
This report shows the possibilities of solving the Gardner problem of determining the lock-in range for multidimensional phase-locked loops systems. The development of analogs of classical stability criteria for the cylindrical phase space made it possible to obtain analytical estimates of the lock-in range for third-order system.