0000000000582497

AUTHOR

Chady Abou Jaoude

showing 2 related works from this author

Efficient anomaly detection on sampled data streams with contaminated phase I data

2020

International audience; Control chart algorithms aim to monitor a process over time. This process consists of two phases. Phase I, also called the learning phase, estimates the normal process parameters, then in Phase II, anomalies are detected. However, the learning phase itself can contain contaminated data such as outliers. If left undetected, they can jeopardize the accuracy of the whole chart by affecting the computed parameters, which leads to faulty classifications and defective data analysis results. This problem becomes more severe when the analysis is done on a sample of the data rather than the whole data. To avoid such a situation, Phase I quality must be guaranteed. The purpose…

Computer scienceSample (material)0211 other engineering and technologies02 engineering and technology[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE]01 natural sciences[INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computing010104 statistics & probabilitysymbols.namesake[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]ChartControl chartEWMA chart0101 mathematics021103 operations researchData stream miningbusiness.industryPattern recognition[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]OutliersymbolsAnomaly detection[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET]Artificial intelligence[INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]businessGibbs sampling
researchProduct

SCCF Parameter and Similarity Measure Optimization and Evaluation

2019

Neighborhood-based Collaborative Filtering (CF) is one of the most successful and widely used recommendation approaches; however, it suffers from major flaws especially under sparse environments. Traditional similarity measures used by neighborhood-based CF to find similar users or items are not suitable in sparse datasets. Sparse Subspace Clustering and common liking rate in CF (SCCF), a recently published research, proposed a tunable similarity measure oriented towards sparse datasets; however, its performance can be maximized and requires further analysis and investigation. In this paper, we propose and evaluate the performance of a new tuning mechanism, using the Mean Absolute Error (MA…

Computer science020206 networking & telecommunications02 engineering and technologyRecommender systemSimilarity measurecomputer.software_genreMeasure (mathematics)Similarity (network science)Subspace clustering0202 electrical engineering electronic engineering information engineeringCollaborative filtering020201 artificial intelligence & image processingData miningcomputerSelection (genetic algorithm)Overall efficiency
researchProduct