0000000000584058
AUTHOR
Hao Liang
showing 15 related works from this author
Calibration strategy of the JUNO experiment
2021
We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]
Study of e+e−→γωJ/ψ and Observation of X(3872)→ωJ/ψ
2019
We study the e^{+}e^{-}→γωJ/ψ process using 11.6 fb^{-1} e^{+}e^{-} annihilation data taken at center-of-mass energies from sqrt[s]=4.008 GeV to 4.600 GeV with the BESIII detector at the BEPCII storage ring. The X(3872) resonance is observed for the first time in the ωJ/ψ system with a significance of more than 5σ. The relative decay ratio of X(3872)→ωJ/ψ and π^{+}π^{-}J/ψ is measured to be R=1.6_{-0.3}^{+0.4}±0.2, where the first uncertainty is statistical and the second systematic (the same hereafter). The sqrt[s]-dependent cross section of e^{+}e^{-}→γX(3872) is also measured and investigated, and it can be described by a single Breit-Wigner resonance, referred to as the Y(4200), with …
Radioactivity control strategy for the JUNO detector
2021
JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…
Observation of e + e − → ηψ(2S) at center-of-mass energies from 4.236 to 4.600 GeV
2021
Journal of high energy physics 2021(10), 177 (2021). doi:10.1007/JHEP10(2021)177
Observation of the Doubly Cabibbo-Suppressed Decay D+→K+π+π−π0 and Evidence for D+→K+ω
2020
Using 2.93 fb(-1) of e(+)e(-) collision data collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, the first observation of the doubly Cabibbo-suppressed decay D+-> K+pi(+) ...
Precise Measurement of the e+e−→π+π−J/ψ Cross Section at Center-of-Mass Energies from 3.77 to 4.60 GeV
2017
The cross section for the process e(+)e(-)-> pi(+) pi(-) J/psi is measured precisely at center-of-mass energies from 3.77 to 4.60 GeV using 9 fb(-1) of data collected with the BESIII detector operating at the BEPCII storage ring. Two resonant structures are observed in a fit to the cross section. The first resonance has a mass of (222.0 +/- 3.1 +/- 1.4) MeV/ c(2) and a width of (44.1 +/- 4.3 +/- 2.0)MeV, while the second one has a mass of (4320.0 +/- 10.4 +/- 7.0)MeV/c(2) and a width of (101.4(- 19.7)(+25.3) +/- 10.2) MeV, where the first errors are statistical and second ones are systematic. The first resonance agrees with the Y(4260) resonance reported by previous experiments. The precisi…
Observation of the Decay X(3872)→π0χc1(1P)
2019
Using a total of 9.0 fb(-1) of e(+)e(-) collision data with center-of-mass energies between 4.15 and 4.30 GeV collected by the BESIII detector, we search for the processes e(+)e(-) gamma X(3872) with X(3872) -> pi(0)chi(cJ) for J = 0, 1, 2. We report the first observation of X(3872) -> pi(0)chi(c1), a new decay mode of the X(3872), with a statistical significance of more than 5 sigma for all systematic fit variations. Normalizing to the previously established process e(+)e(-) -> gamma X(3872) with X(3872) -> pi(+) pi(-) J/psi, we find B(X(3872) -> pi(0)chi(c1))/B(X(3872) -> pi+ pi(-) J/psi) = 0.88(-0.27)(+0.33) +/- 0.10, where the first error is statistical and the second is systematic. We …
Neutrino Physics with JUNO
2016
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plan…
Observation of a Resonant Structure in e+e−→K+K−π0π0
2020
A partial-wave analysis is performed for the process e^{+}e^{-}→K^{+}K^{-}π^{0}π^{0} at the center-of-mass energies ranging from 2.000 to 2.644 GeV. The data samples of e^{+}e^{-} collisions, collected by the BESIII detector at the BEPCII collider with a total integrated luminosity of 300 pb^{-1}, are analyzed. The total Born cross sections for the process e^{+}e^{-}→K^{+}K^{-}π^{0}π^{0}, as well as the Born cross sections for the subprocesses e^{+}e^{-}→ϕπ^{0}π^{0}, K^{+}(1460)K^{-}, K_{1}^{+}(1400)K^{-}, K_{1}^{+}(1270)K^{-}, and K^{*+}(892)K^{*-}(892), are measured versus the center-of-mass energy. The corresponding results for e^{+}e^{-}→K^{+}K^{-}π^{0}π^{0} and ϕπ^{0}π^{0} are consist…
Precise Measurement of the e+e− → π+π−J/ψ Cross Section at Center-of-Mass Energies from 3.77 to 4.60 GeV
2020
The cross section for the process e(+)e(-)-> pi(+) pi(-) J/psi is measured precisely at center-of-mass energies from 3.77 to 4.60 GeV using 9 fb(-1) of data collected with the BESIII detector operating at the BEPCII storage ring. Two resonant structures are observed in a fit to the cross section. The first resonance has a mass of (222.0 +/- 3.1 +/- 1.4) MeV/ c(2) and a width of (44.1 +/- 4.3 +/- 2.0)MeV, while the second one has a mass of (4320.0 +/- 10.4 +/- 7.0)MeV/c(2) and a width of (101.4(- 19.7)(+25.3) +/- 10.2) MeV, where the first errors are statistical and second ones are systematic. The first resonance agrees with the Y(4260) resonance reported by previous experiments. The precisi…
Future Physics Programme of BESIII
2020
There has recently been a dramatic renewal of interest in the subjects of hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like $XYZ$ states at BESIII and $B$ factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related $X(1835)$ meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII over the remaining lifetime of BEPCII operation. This survey will help in the optimization of the data-taking pla…
Precision Higgs physics at the CEPC Supported by the National Key Program for S&T Researh and Development (2016YFA0400400); CAS Center for Excellence…
2019
The discovery of the Higgs boson with its mass around 125 GeV by the ATLAS and CMS Collaborations marked the beginning of a new era in high energy physics. The Higgs boson will be the subject of extensive studies of the ongoing LHC program. At the same time, lepton collider based Higgs factories have been proposed as a possible next step beyond the LHC, with its main goal to precisely measure the properties of the Higgs boson and probe potential new physics associated with the Higgs boson. The Circular Electron Positron Collider (CEPC) is one of such proposed Higgs factories. The CEPC is an e+e− circular collider proposed by and to be hosted in China. Located in a tunnel of approximately 10…
The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS
2021
The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4
Proceedings of Réanimation 2017, the French Intensive Care Society International Congress
2017
JUNO sensitivity to low energy atmospheric neutrino spectra
2021
Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $\nu_e$ and $\nu_\mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then pro…