0000000000585622

AUTHOR

Denis Tagu

showing 6 related works from this author

Seasonal photoperiodism regulates the expression of cuticular and signalling protein genes in the pea aphid

2007

International audience; Seasonal photoperiodism in aphids is responsible for the spectacular switch from asexual to sexual reproduction. However, little is known on the molecular and physiological mechanisms involved in reproductive mode shift through the action of day length. Earlier works showed that aphid head, but not eyes, directly perceives the photoperiodic signal through the cuticle. In order to identify genes regulating the photoperiodic response, a 3321 cDNA microarray developed for the pea aphid, Acyrthosiphon pisum was used to compare RNA populations extracted from heads of short- and long-day reared aphids. Microarray analyses revealed that 59 different transcripts were signifi…

MaleCell signalingPhotoperiodBiologyBiochemistry03 medical and health sciences0302 clinical medicineComplementary DNAAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRNA MessengerMolecular BiologyGeneOligonucleotide Array Sequence Analysis030304 developmental biologyGeneticsphotoperiodism0303 health sciencesAphidReverse Transcriptase Polymerase Chain ReactionGene Expression Profilingfood and beveragesbiology.organism_classificationSexual reproductionAcyrthosiphon pisumADNcGene Expression RegulationAphidsInsect ScienceInsect ProteinsFemaleSeasonsHeadMoulting030217 neurology & neurosurgerySignal Transduction
researchProduct

Additional file 1 of The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic p…

2020

Additional file 1: Figures. S1-S22, Table S1-S20, Methods and Results. Figure S1. Mitochondrial genome view of grape phylloxera. Figure S2. Proportion of transposable elements (TE) in the genome. Figure S3. GO terms of phylloxera-specific genes. Figure S4. Enriched GO terms in the phylloxera genome with and without TEs. Figure S5. Gene gain/loss at different nodes or branches. Figure S6. Species phylogenetic tree based on insect genomes and the transcriptomes of Planoccoccus citri and Adelges tsugae. Figure S7. Diagram of the gap-filling and annotation process. Figure S8. Urea cycle in D. vitifoliae and A. pisum. Figure S9. IMD immune pathway in D. vitifoliae.Figure S10. Phylogenetic tree o…

2. Zero hunger
researchProduct

Additional file 1 of The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic p…

2020

Additional file 1: Figures. S1-S22, Table S1-S20, Methods and Results. Figure S1. Mitochondrial genome view of grape phylloxera. Figure S2. Proportion of transposable elements (TE) in the genome. Figure S3. GO terms of phylloxera-specific genes. Figure S4. Enriched GO terms in the phylloxera genome with and without TEs. Figure S5. Gene gain/loss at different nodes or branches. Figure S6. Species phylogenetic tree based on insect genomes and the transcriptomes of Planoccoccus citri and Adelges tsugae. Figure S7. Diagram of the gap-filling and annotation process. Figure S8. Urea cycle in D. vitifoliae and A. pisum. Figure S9. IMD immune pathway in D. vitifoliae.Figure S10. Phylogenetic tree o…

2. Zero hunger
researchProduct

Sex versus parthenogenesis: A transcriptomic approach of photoperiod response in the model aphid Acyrthosiphon pisum (Hemiptera: Aphididae)

2007

International audience; Most aphids develop a cyclic parthenogenesis life-cycle. After several generations of viviparous parthenogenetic females, it follows a single annual generation of sexual individuals, usually in autumn, that mate and lay the sexual eggs. Shortening of photoperiod at the end of the summer is a key factor inducing the sexual response. With the survey here reported we aimed at identifying a collection of candidate genes to participate at some point in the cascade of events that lead to the sexual phenotypes. Following a suppression subtractive hybridization methodology (SSH) on the model aphid Acyrthosiphon pisum, we built and characterised two reciprocal cDNA libraries …

0106 biological sciencesCandidate genePhotoperiodParthenogenesis01 natural sciencesSexual Behavior Animal03 medical and health sciencesGeneticsAnimalsGeneGene Library030304 developmental biologyExpressed Sequence TagsGenetics[SDV.GEN]Life Sciences [q-bio]/Genetics0303 health sciencesAphidbiologyfood and beveragesAphididaeGeneral MedicineParthenogenesisbiology.organism_classificationHemipteraAcyrthosiphon pisum010602 entomologyGene Expression RegulationSuppression subtractive hybridizationAphidsInsect ProteinsGene
researchProduct

The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest

2020

Background: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. Results: Using a combination of…

0106 biological sciencesFil·loxeraPhysiology[SDV]Life Sciences [q-bio]Introduced speciesPlant Science01 natural sciencesGenomeGene duplicationsStructural BiologyVitislcsh:QH301-705.5ComputingMilieux_MISCELLANEOUS2. Zero hunger0303 health scienceseducation.field_of_studyHost plant interactionsGenomeEndosymbiosisbiologyfood and beveragesBiological SciencesBiological EvolutionGeneral Agricultural and Biological SciencesRootstockInfectionDaktulosphaira vitifoliaeBiotechnologyResearch ArticlePopulation010603 evolutionary biologyGeneral Biochemistry Genetics and Molecular BiologyHemiptera03 medical and health sciencesGeneticsInsect pestsAnimalsPlagues d'insectesAdaptationBiological invasionsGenomeseducationPhylloxeraEcology Evolution Behavior and Systematics030304 developmental biologyObligateHuman GenomeViticulturaCell Biology15. Life on landbiology.organism_classificationBiologicalEffectorsClimate Actionlcsh:Biology (General)13. Climate actionEvolutionary biologyArthropod genomesPhylloxeraAdaptationIntroduced SpeciesInsectAnimal DistributionDevelopmental Biology
researchProduct

2006

Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect.

0106 biological sciencesGenetics0303 health sciencesAphidExpressed sequence tagbiologyIn silicomedia_common.quotation_subjectfungifood and beveragesInsectbiochemical phenomena metabolism and nutritionbiology.organism_classification01 natural sciencesHemipteraPisumAcyrthosiphon pisum010602 entomology03 medical and health sciencesDrosophila melanogaster030304 developmental biologymedia_commonGenome Biology
researchProduct