0000000000585749
AUTHOR
O. Arndt
β-decay of22O
A mass-separated 12 C 22 O molecular ion beam from the ISOLDE facility was used to study the decay of neutron-rich 22 O. The experimental results were compared with the results from an earlier experiment and predictions by shellmodel calculations using various effective interactions. The mechanism leading to the vanishing decay strength to the first 1 + level of the 22 F nucleus, predicted with the USD effective interaction but not supported by the experimental data, is analysed.
Structure And Decay Of Neutron-Rich Nuclides In The 115 ≤ A ≤ 138 Mass Range And r-Process Nucleosynthesis
The structure and decay of neutron‐rich r‐process nuclides has been studied by a variety of means that take advantage of enhanced selectivity to permit identification of exotic nuclides. New level structures are presented for 134,135Sb along with data for Ag isomers and Cd yrast structures. Some of the properties measured play an important role in calculations of the yields of elements and isotopes produced in r‐process nucleosynthesis that takes place at high temperature in the presence of large densities of neutrons.
N=82Shell Quenching of the Classicalr-Process “Waiting-Point” NucleusCd130
First $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-spectroscopic decay studies of the $N=82$ $r$-process ``waiting-point'' nuclide $^{130}\mathrm{C}\mathrm{d}$ have been performed at CERN/ISOLDE using the highest achievable isotopic selectivity. Several nuclear-physics surprises have been discovered. The first one is the unanticipatedly high energy of 2.12 MeV for the [$\ensuremath{\pi}{g}_{9/2}\ensuremath{\bigotimes}\ensuremath{\nu}{g}_{7/2}]$ ${1}^{+}$ level in $^{130}\mathrm{I}\mathrm{n}$, which is fed by the main Gamow-Teller transition. The second surprise is the rather high ${Q}_{\ensuremath{\beta}}$ value of 8.34 MeV, which is in agreement only with recent mass models that include…
β-decay measurements ofA≃ 70 − 110 r-process nuclei at the National Superconducting Cyclotron Laboratory
The present paper reports on several r-process motivated β-decay experiments undertaken at the National Superconducting Cyclotron Laboratory. β-decay half-lives and β-delayed neutron-emission probabilities were measured for nuclei around the r-process A = 70–80 and A = 90 – 110 mass regions. The data are discussed on the basis of quasi-random phase approximation calculations. The emphasis is made on the impact of these data upon calculations of r-process abundances.
Radioactive ion beams in the region of 100Sn and 78Ni at the NSCL
The regions around the doubly magic nuclei 100 Sn and 78 Ni are of great interest from a nuclear structure standpoint. These nuclei also play a key role in the astrophysical rp- and r-processes, respectively. Recently, nuclei in these regions were studied at the Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University.
β-decay studies of r-process nuclei at NSCL
Abstract Observed neutron-capture elemental abundances in metal-poor stars, along with ongoing analysis of the extremely metal-poor Eu-enriched sub-class provide new guidance for astrophysical models aimed at finding the r-process sites. The present paper emphasizes the importance of nuclear physics parameters entering in these models, particularly β -decay properties of neutron-rich nuclei. In this context, several r-process motivated β -decay experiments performed at the National Superconducting Cyclotron Laboratory (NSCL) are presented, including a summary of results and impact on model calculations.
Progress in ISOL target–ion source systems
The heart of every ISOL (isotope separation on-line) facility is its target and ion source system. Its efficiency, selectivity and rapidity is decisive for the production of intense and pure ion beams of short-lived isotopes. Recent progress in ISOL target and ion source technology is discussed at the examples of radioactive ion beams of exotic zinc and tin isotopes that were purified by isothermal chromatography and molecular sideband separation respectively. An outlook is given to which other elements these purification methods are applicable.
β-decay half-lives andβ-delayed neutron emission probabilities of nuclei in the regionA≲110, relevant for the r process
Measurements of $\ensuremath{\beta}$-decay properties of $A\ensuremath{\lesssim}110$ r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory at Michigan State University. $\ensuremath{\beta}$-decay half-lives for $^{105}\mathrm{Y}$, $^{106,107}\mathrm{Zr}$, and $^{111}\mathrm{Mo}$, along with $\ensuremath{\beta}$-delayed neutron emission probabilities of $^{104}\mathrm{Y}$, $^{109,110}\mathrm{Mo}$ and upper limits for $^{105}\mathrm{Y}$, $^{103\ensuremath{-}107}\mathrm{Zr}$, and $^{108,111}\mathrm{Mo}$ have been measured for the first time. Studies on the basis of the quasi-random-phase approximation are used to analyze the ground-state deformation of these…
β-Decay Studies Close to the N=82 r-process Path
New half-lives for neutron-rich ruthenium, rhodium and palladium isotopes close to the r-process path along the N=82 closed shell have been measured at the National Superconducting Cyclotron Laboratory at Michigan State University. The studied isotopes are close to the critical A=118-126 mass region in the astrophysical r-process, where incorrect nuclear structure development towards the shell closure may have the most pronounced effect on the abundances of elements produced. Neutron-rich nuclei were produced by fragmentation of a 120-MeV per nucleon 136 Xe beam on Be and were separated by the A1900 fragment separator. The nuclei of interest were implanted into a double-sided Si strip detec…
R-process experimental campaign at the National Superconducting Cyclotron Laboratory
A JINA/VISTARS r-process campaign was completed at the A1900 Fragment Separator of the National Superconducting Cyclotron Laboratory in the fall of 2005. The purpose of the campaign was the measurement of the beta-decay half-lives and beta-delayed neutron-emission probabilities of different unknown neutron-rich nuclei participating in the r-process. Details of this campaign will be presented.
Half-Life of the Doubly Magicr-Process NucleusN78i
Nuclei with magic numbers serve as important benchmarks in nuclear theory. In addition, neutron-rich nuclei play an important role in the astrophysical rapid neutron-capture process (r process). 78Ni is the only doubly magic nucleus that is also an important waiting point in the r process, and serves as a major bottleneck in the synthesis of heavier elements. The half-life of 78Ni has been experimentally deduced for the first time at the Coupled Cyclotron Facility of the National Superconducting Cyclotron Laboratory at Michigan State University, and was found to be 110(+100)(-60) ms. In the same experiment, a first half-life was deduced for 77Ni of 128(+27)(-33) ms, and more precise half-li…