0000000000586311
AUTHOR
Victoria Moreno-manzano
A longitudinal DTI and histological study of the spinal cord reveals early pathological alterations in G93A-SOD1 mouse model of amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective motor neuron degeneration in the motor cortex, brainstem and spinal cord. It is generally accepted that ALS is caused by death of motor neurons, however the exact temporal cascade of degenerative processes is not yet completely known. To identify the early pathological changes in spinal cord of G93A-SOD1 AIS mice we performed a comprehensive longitudinal analysis employing diffusion-tensor magnetic resonance imaging alongside histology and electron microscopy, in parallel with peripheral nerve histology. We showed the gradient of degeneration appearance in spinal cord white and gray matter, startin…
Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model.
Diffusion-weighted Magnetic Resonance Imaging (dMRI) has relevant applications in the microstructural characterization of the spinal cord, especially in neurodegenerative diseases. Animal models have a pivotal role in the study of such diseases; however, in vivo spinal dMRI of small animals entails additional challenges that require a systematical investigation of acquisition parameters. The purpose of this study is to compare three acquisition protocols and identify the scanning parameters allowing a robust estimation of the main diffusion quantities and a good sensitivity to neurodegeneration in the mouse spinal cord. For all the protocols, the signal-to-noise and contrast-to noise ratios…
Activation of Neurogenesis in Multipotent Stem Cells Cultured In Vitro and in the Spinal Cord Tissue After Severe Injury by Inhibition of Glycogen Synthase Kinase-3
AbstractThe inhibition of glycogen synthase kinase-3 (GSK-3) can induce neurogenesis, and the associated activation of Wnt/β-catenin signaling via GSK-3 inhibition may represent a means to promote motor function recovery following spinal cord injury (SCI) via increased astrocyte migration, reduced astrocyte apoptosis, and enhanced axonal growth. Herein, we assessed the effects of GSK-3 inhibition in vitro on the neurogenesis of ependymal stem/progenitor cells (epSPCs) resident in the mouse spinal cord and of human embryonic stem cell–derived neural progenitors (hESC-NPs) and human-induced pluripotent stem cell–derived neural progenitors (hiPSC-NPs) and in vivo on spinal cord tissue regenera…
FM19G11, a New Hypoxia-inducible Factor (HIF) Modulator, Affects Stem Cell Differentiation Status
The biology of the alpha subunits of hypoxia-inducible factors (HIF alpha) has expanded from their role in angiogenesis to their current position in the self-renewal and differentiation of stem cells. The results reported in this article show the discovery of FM19G11, a novel chemical entity that inhibits HIF alpha proteins that repress target genes of the two alpha subunits, in various tumor cell lines as well as in adult and embryonic stem cell models from rodents and humans, respectively. FM19G11 inhibits at nanomolar range the transcriptional and protein expression of Oct4, Sox2, Nanog, and Tgf-alpha undifferentiating factors, in adult rat and human embryonic stem cells, FM19G11 activit…
tappAS: a comprehensive computational framework for the analysis of the functional impact of differential splicing
AbstractTraditionally, the functional analysis of gene expression data has used pathway and network enrichment algorithms. These methods are usually gene rather than transcript centric and hence fall short to unravel functional roles associated to posttranscriptional regulatory mechanisms such as Alternative Splicing (AS) and Alternative PolyAdenylation (APA), jointly referred here as Alternative Transcript Processing (AltTP). Moreover, short-read RNA-seq has serious limitations to resolve full-length transcripts, further complicating the study of isoform expression. Recent advances in long-read sequencing open exciting opportunities for studying isoform biology and function. However, there…
Engineered axon tracts within tubular biohybrid scaffolds
[EN] Injuries to the nervous system that involve the disruption of axonal pathways are devastating to the individual and require specific tissue engineering strategies. Here we analyse a cells-biomaterials strategy to overcome the obstacles limiting axon regeneration in vivo, based on the combination of a hyaluronic acid (HA) single-channel tubular conduit filled with poly-L-lactide acid (PLA) fibres in its lumen, with pre-cultured Schwann cells (SCs) as cells supportive of axon extension. The HA conduit and PLA fibres sustain the proliferation of SC, which enhance axon growth acting as a feeder layer and growth factor pumps. The parallel unidirectional ensemble formed by PLA fibres and SC …