0000000000586731

AUTHOR

Ioannis Tomkos

showing 3 related works from this author

Simultaneous 2R regeneration of WDM signals in a single optical fibre

2009

Two experimental implementations of amplitude regeneration of WDM signals based on self-phase modulation (SPM) in optical fibres are discussed. The two examples differ in their approach of mitigation of inter-channel nonlinearities.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiberMaterials sciencePhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 optics020210 optoelectronics & photonicsOpticslawWavelength-division multiplexing0103 physical sciencesDispersion (optics)0202 electrical engineering electronic engineering information engineeringOptical filterSelf-phase modulationComputingMilieux_MISCELLANEOUS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryNonlinear opticsAmplitudeModulationOptoelectronicsbusiness
researchProduct

Surface plasmon-polariton amplifiers

2012

Propagation of surface plasmons at metal surfaces is receiving much interest nowadays because of its broad range of potential applications, like subwavelength photonics or biosensing. Although plasmonic devices achieve unique properties, surface plasmons suffer from high attenuation because of the absorption losses in the metal. This limitation can be overcome by providing the material adjacent to the metal with optical gain. Under these conditions, absorption losses are compensated and the propagation length of the plasmon is significantly increased. In this work, a review of plasmonic amplifiers is presented. To this end, the state of the art of such devices and the propagation characteri…

Active laser mediumMaterials sciencebusiness.industryQuantum dotSurface plasmonPolaritonPhysics::OpticsOptoelectronicsStimulated emissionPhotonicsbusinessSurface plasmon polaritonPlasmon2012 14th International Conference on Transparent Optical Networks (ICTON)
researchProduct

Chip-to-chip plasmonic interconnects and the activities of EU project NAVOLCHI

2012

In this paper, the chip-to-chip interconnection architecture adopted by the EU-project NAVOLCHI are discussed. The plasmonic physical layer consisting of a plasmonic nanoscale laser, a modulator, an amplifier and a detector is introduced. Current statuses of the plasmonic devices are reviewed.

Materials scienceTechnology and Engineeringbusiness.industryAmplifierDetectorPhysical layerPhysics::OpticsSi plasmonic transceiverplasmonic interconnectsChipComputer Science::Hardware ArchitectureNAVOLCHIModulationHardware_INTEGRATEDCIRCUITSPhysics::Atomic and Molecular ClustersOptoelectronicsTransceiverPhotonicsbusinessPlasmon
researchProduct