0000000000587239

AUTHOR

Shilei Ding

showing 10 related works from this author

Interfacial Dzyaloshinskii-Moriya interaction and chiral magnetic textures in a ferrimagnetic insulator

2019

The interfacial Dzyaloshinskii-Moriya interaction (DMI) in multilayers of heavy metal and ferromagnetic metals enables the stabilization of novel chiral spin structures such as skyrmions. Magnetic insulators, on the other hand can exhibit enhanced dynamics and properties such as lower magnetic damping and therefore it is of interest to combine the properties enabled by interfacial DMI with insulating systems. Here, we demonstrate the presence of interfacial DMI in heterostructures that include insulating magnetic layers. We use a bilayer of perpendicularly magnetized insulating thulium iron garnet (TmIG) and the heavy metal platinum, and find a surprisingly strong interfacial DMI that, comb…

Materials science530 Physicschemistry.chemical_elementFOS: Physical sciencesInsulator (electricity)02 engineering and technology01 natural sciencesCondensed Matter::Materials Sciencechemistry.chemical_compoundFerrimagnetism0103 physical sciences010306 general physicsCondensed Matter - Materials ScienceCondensed matter physicsSkyrmionGadolinium gallium garnetMaterials Science (cond-mat.mtrl-sci)Heterojunction530 Physik021001 nanoscience & nanotechnologyThuliumchemistryFerromagnetismMagnetic dampingCondensed Matter::Strongly Correlated Electrons0210 nano-technologyPhysical Review B
researchProduct

Identifying the origin of the nonmonotonic thickness dependence of spin-orbit torque and interfacial Dzyaloshinskii-Moriya interaction in a ferrimagn…

2020

Electrical manipulation of magnetism via spin-orbit torques (SOTs) promises efficient spintronic devices. In systems comprising magnetic insulators and heavy metals, SOTs have started to be investigated only recently, especially in systems with interfacial Dzyaloshinskii-Moriya interaction (iDMI). Here, we quantitatively study the SOT efficiency and iDMI in a series of gadolinium gallium garnet (GGG) / thulium iron garnet (TmIG) / platinum (Pt) heterostructures with varying TmIG and Pt thicknesses. We find that the non-monotonic SOT efficiency as a function of the magnetic layer thickness is not consistent with the 1/thickness dependence expected from a simple interfacial SOT mechanism. Mor…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsSpintronics530 PhysicsMagnetismEnergy level splittingMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGadolinium gallium garnetInsulator (electricity)Heterojunction02 engineering and technologyElectron530 Physik021001 nanoscience & nanotechnology01 natural scienceschemistry.chemical_compoundchemistryFerrimagnetismMagnet0103 physical sciences010306 general physics0210 nano-technologySpin orbit torquePhysical Review B
researchProduct

An insulating doped antiferromagnet with low magnetic symmetry as a room temperature spin conduit

2020

We report room temperature long-distance spin transport of magnons in antiferromagnetic thin film hematite doped with Zn. The additional dopants significantly alter the magnetic anisotropies, resulting in a complex equilibrium spin structure that is capable of efficiently transporting spin angular momentum at room temperature without the need for a well-defined, pure easy-axis or easy-plane anisotropy. We find intrinsic magnon spin-diffusion lengths of up to 1.5 {\mu}m, and magnetic domain governed decay lengths of 175 nm for the low frequency magnons, through electrical transport measurements demonstrating that the introduction of non-magnetic dopants does not strongly reduce the transport…

010302 applied physicsCondensed Matter - Materials ScienceMaterials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsPhysics and Astronomy (miscellaneous)Magnetic domainCondensed matter physicsMagnetoresistanceMagnonMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologySpin structure021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials ScienceMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesMagnetic dampingAntiferromagnetismCondensed Matter::Strongly Correlated Electrons0210 nano-technologyAnisotropySpin (physics)Applied Physics Letters
researchProduct

Identification of Néel Vector Orientation in Antiferromagnetic Domains Switched by Currents in NiO/Pt Thin Films

2021

Understanding the electrical manipulation of the antiferromagnetic order is a crucial aspect to enable the design of antiferromagnetic devices working at THz frequencies. Focusing on collinear insulating antiferromagnetic $\mathrm{Ni}\mathrm{O}/\mathrm{Pt}$ thin films as a materials platform, we identify the crystallographic orientation of the domains that can be switched by currents and quantify the N\'eel-vector direction changes. We demonstrate electrical switching between different T domains by current pulses, finding that the N\'eel-vector orientation in these domains is along [$\ifmmode\pm\else\textpm\fi{}5$ $\ifmmode\pm\else\textpm\fi{}5$ 19], different compared to the bulk $⟨112⟩$ d…

PhysicsCondensed matter physicsSpintronicsGeneral Physics and AstronomyOrder (ring theory)02 engineering and technologyState (functional analysis)021001 nanoscience & nanotechnology01 natural sciencesOrientation (vector space)0103 physical sciencesAntiferromagnetismThin film010306 general physics0210 nano-technologyOrder of magnitudeMagnetoelastic couplingPhysical Review Applied
researchProduct

Magnetic Coupling in Y3Fe5O12/Gd3Fe5O12 Heterostructures

2021

Ferrimagnetic ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ (YIG) is the prototypical material for studying magnonic properties due to its exceptionally low damping. By substituting the yttrium with rare earth elements that have a net magnetic moment, we can introduce an additional spin degree of freedom. Here, we study the magnetic coupling in epitaxial ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$/${\mathrm{Gd}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ (YIG/GIG) heterostructures grown by pulsed laser deposition. From bulk sensitive magnetometry and surface sensitive spin Seebeck effect and spin Hall magnetoresistance measurements, we determine the alignment of the heterostruct…

Condensed Matter::Materials ScienceMagnetizationMaterials scienceMagnetic momentMagnetoresistanceFerromagnetismCondensed matter physicsFerrimagnetismMagnonGeneral Physics and AstronomyCondensed Matter::Strongly Correlated ElectronsCoupling (probability)Inductive couplingPhysical Review Applied
researchProduct

Harnessing Orbital-to-Spin Conversion of Interfacial Orbital Currents for Efficient Spin-Orbit Torques.

2020

The system generates two errors of "Bad character(s) in field Abstract" for no reason. Please refer to the manuscript for the full abstract.

Materials science530 PhysicsMagnetismFOS: Physical sciencesGeneral Physics and AstronomyNon-equilibrium thermodynamicschemistry.chemical_elementInverse01 natural sciences0103 physical sciencesddc:530010306 general physicsSpin (physics)Spin-½CouplingPhysicsCondensed Matter - Materials ScienceSpintronicsCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)530 PhysikCoupling (probability)OrbitThuliumchemistryOrbit (dynamics)Condensed Matter::Strongly Correlated Electrons
researchProduct

Electrical detection of the spin reorientation transition in antiferromagnetic TmFeO3 thin films by spin Hall magnetoresistance

2021

$\mathrm{Tm}\mathrm{Fe}{\mathrm{O}}_{3}$ (TFO) is a canted antiferromagnet that undergoes a spin reorientation transition (SRT) with temperature between 82 and 94 K in single crystals. In this temperature region, the N\'eel vector continuously rotates from the crystallographic $c$ axis (below 82 K) to the $a$ axis (above 94 K). The SRT allows for a temperature control of distinct antiferromagnetic states without the need for a magnetic field, making it apt for applications working at terahertz frequencies. For device applications, thin films of TFO are required as well as an electrical technique for read-out of the magnetic state. Here, we demonstrate that orthorhombic TFO thin films can be…

Materials scienceCondensed matter physicsMagnetoresistance02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldPulsed laser depositionCondensed Matter::Materials Science0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsOrthorhombic crystal systemThin film010306 general physics0210 nano-technologySpin (physics)Physical Review B
researchProduct

Identification of Néel vector orientation in antiferromagnetic domains switched by currents in NiO/Pt thin films

2020

Understanding the electrical manipulation of antiferromagnetic order is a crucial aspect to enable the design of antiferromagnetic devices working at THz frequency. Focusing on collinear insulating antiferromagnetic NiO/Pt thin films as a materials platform, we identify the crystallographic orientation of the domains that can be switched by currents and quantify the N\'eel vector direction changes. We demonstrate electrical switching between different T-domains by current pulses, finding that the N\'eel vector orientation in these domains is along $[\pm5\ \pm5\ 19]$, different compared to the bulk $$ directions. The final state of the N\'eel vector $\textbf{n}$ switching after current pulse…

Condensed Matter - Materials Science530 Physics530 Physik
researchProduct

Electrical detection of the spin reorientation transition in antiferromagnetic TmFeO3 thin films by spin Hall magnetoresistance

2020

TmFeO$_3$ (TFO) is a canted antiferromagnet that undergoes a spin reorientation transition (SRT) with temperature between 82 K and 94 K in single crystals. In this temperature region, the N\'eel vector continuously rotates from the crystallographic $c$-axis (below 82 K) to the $a$-axis (above 94 K). The SRT allows for a temperature control of distinct antiferromagnetic states without the need for a magnetic field, making it apt for applications working at THz frequencies. For device applications, thin films of TFO are required as well as an electrical technique for reading out the magnetic state. Here we demonstrate that orthorhombic TFO thin films can be grown by pulsed laser deposition an…

Condensed Matter - Materials Science530 PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences530 Physik
researchProduct

Data for the article "An insulating doped antiferromagnet with low magnetic symmetry as a room temperature spin conduit "

2020

Data for the article "An insulating doped antiferromagnet with low magnetic symmetry as a room temperature spin conduit " (https://aip.scitation.org/doi/full/10.1063/5.0032940 and https://arxiv.org/abs/2011.09755)

researchProduct