0000000000588148
AUTHOR
July Galeano
Light-Tissue Interaction Model for the Analysis of Skin Ulcer Multi-spectral Images
International audience; Skin ulcers (SU) are ones of the most frequent causes of consultation in primary health-care units (PHU) in tropical areas. However, the lack of specialized physicians in those areas, leads to improper diagnosis and management of the patients. There is then a need to develop tools that allow guiding the physicians toward a more accurate diagnosis. Multi-spectral imaging systems are a potential non-invasive tool that could be used in the analysis of skin ulcers. With these systems it is possible to acquire optical images at different wavelengths which can then be processed by means of mathematical models based on optimization approaches. The processing of those kind o…
Analysis of human skin hyper-spectral images by non-negative matrix factorization
International audience; This article presents the use of Non-negative Matrix Factorization, a blind source separation algorithm, for the decomposition of human skin absorption spectra in its main pigments: melanin and hemoglobin. The evaluated spectra come from a Hyper-Spectral Image, which is the result of the processing of a Multi-Spectral Image by a neural network-based algorithm. The implemented source separation algorithm is based on a multiplicative coeffi cient upload. The goal is to represent a given spectrum as the weighted sum of two spectral components. The resulting weighted coefficients are used to quantify melanin and hemoglobin content in the given spectra. Results present a …
Unmixing of human skin optical reflectance maps by Non-negative Matrix Factorization algorithm
International audience; We present in this paper the decomposition of human skin absorption spectra with a Non-negative Matrix Factorization method. In doing so, we are able to quantify the relative proportion of the main chromophores present in the epidermis and the dermis. We present experimental results showing that we obtain a good estimate of melanin and hemoglobin concentrations. Our approach has been validated by analyzing the human skin absorption spectra in areas of healthy skin and areas affected by melasma on eight patients.