0000000000590072
AUTHOR
Gonzalo Givaja
On the Road to MM′X Polymers: Redox Properties of Heterometallic Ni···Pt Paddlewheel Complexes
On the quest of heterometallic mixed-valence MM'X chains, we have prepared two stable discrete bimetallic compounds: the reduced (PPN)[ClNi(μ-OSCPh)4Pt] (PPN = bis(triphenylphosphine)iminium; OSCPh = benzothiocarboxylato) and the oxidized [(H2O)Ni(μ-OSCPh)4PtCl] species. The role of the aqua and chlorido axial ligands is crucial to facilitate oxidation of the {Ni(μ-OSCPh)4Pt} core. Experimental and theoretical analyses indicate that a NiPt-Cl/Cl-NiPt isomerization process occurs in the oxidized species. The electronic structure of the reduced system shows two unpaired electrons, one located in a d(x(2)-y(2)) orbital of the Ni(II) ion and a second in the antibonding d(z(2)-dz(2)) combination…
Electrical conductive coordination polymers
Coordination polymers are currently one of the hottest topics in Inorganic and Supramolecular Chemistry. This critical review summarizes the current state-of-the-art on electrical conductive coordination polymers (CPs), also named metal-organic frameworks (MOFs). The data were collected following two sort criteria of the CPs structure: dimensionality and bridging ligands (151 references).
Electrical Behaviour of Heterobimetallic [MM′(EtCS2)4] (MM′=NiPd, NiPt, PdPt) and MM′X-Chain Polymers [PtM(EtCS2)4I] (M=Ni, Pd)
Herein, we report the isolation of new heterobimetallic complexes [Ni0.6Pd1.4ACHTUNGTRENUNG(EtCS2)4] (1), [NiPtACHTUNGTRENUNG(EtCS2)4] (2) and [Pd0.4Pt1.6ACHTUNGTRENUNG(EtCS2)4] (3), which were constructed by using transmetallation procedures. Subsequent oxidation with iodine furnished the MM'X monodimensional chains [Ni0.6Pt1.4ACHTUNGTRENUNG(EtCS2)4I] (4) and [Ni0.1Pd0.3Pt1.6ACHTUNGTRENUNG(EtCS2)4I] (5). The physical properties of these systems were investigated and the chain structures 4 and 5 were found to be reminiscent of the parent [Pt2ACHTUNGTRENUNG(EtCS2)4I] species. However, they were more sensitively dependent on the localised nature of the charge on the Ni ion, which caused spont…
ChemInform Abstract: Electrical Conductive Coordination Polymers
Coordination polymers are currently one of the hottest topics in Inorganic and Supramolecular Chemistry. This critical review summarizes the current state-of-the-art on electrical conductive coordination polymers (CPs), also named metal–organic frameworks (MOFs). The data were collected following two sort criteria of the CPs structure: dimensionality and bridging ligands (151 references).
CCDC 1013364: Experimental Crystal Structure Determination
Related Article: Marcello Gennari, Gonzalo Givaja, Oscar Castillo, Laura Hermosilla, Carlos J. Gómez-García, Carole Duboc, Agustí Lledós, Ruben Mas-Ballesté, and Felix Zamora|2014|Inorg.Chem.|53|10553|doi:10.1021/ic501659x
CCDC 1013365: Experimental Crystal Structure Determination
Related Article: Marcello Gennari, Gonzalo Givaja, Oscar Castillo, Laura Hermosilla, Carlos J. Gómez-García, Carole Duboc, Agustí Lledós, Ruben Mas-Ballesté, and Felix Zamora|2014|Inorg.Chem.|53|10553|doi:10.1021/ic501659x