0000000000590418

AUTHOR

Lutz Mattner

showing 1 related works from this author

Stochastic ordering of classical discrete distributions

2010

For several pairs $(P,Q)$ of classical distributions on $\N_0$, we show that their stochastic ordering $P\leq_{st} Q$ can be characterized by their extreme tail ordering equivalent to $ P(\{k_\ast \})/Q(\{k_\ast\}) \le 1 \le \lim_{k\to k^\ast} P(\{k\})/Q(\{k\})$, with $k_\ast$ and $k^\ast$ denoting the minimum and the supremum of the support of $P+Q$, and with the limit to be read as $P(\{k^\ast\})/Q(\{k^\ast\})$ for $k^\ast$ finite. This includes in particular all pairs where $P$ and $Q$ are both binomial ($b_{n_1,p_1} \leq_{st} b_{n_2,p_2}$ if and only if $n_1\le n_2$ and $(1-p_1)^{n_1}\ge(1-p_2)^{n_2}$, or $p_1=0$), both negative binomial ($b^-_{r_1,p_1}\leq_{st} b^-_{r_2,p_2}$ if and on…

Statistics and ProbabilityWaiting timeApplied MathematicsProbability (math.PR)010102 general mathematicsCoupling (probability)Poisson distribution01 natural sciencesStochastic orderingInfimum and supremumHypergeometric distributionCombinatorics010104 statistics & probabilitysymbols.namesakeFOS: MathematicsMonotone likelihood ratiosymbolsLimit (mathematics)60E150101 mathematicsMathematics - ProbabilityMathematicsAdvances in Applied Probability
researchProduct