0000000000592045

AUTHOR

Antti Käenmäki

showing 26 related works from this author

Conical upper density theorems and porosity of measures

2008

Abstract We study how measures with finite lower density are distributed around ( n − m ) -planes in small balls in R n . We also discuss relations between conical upper density theorems and porosity. Our results may be applied to a large collection of Hausdorff and packing type measures.

Mathematics(all)General Mathematics010102 general mathematicsHausdorff spaceGeometryConical surfaceType (model theory)01 natural sciencesPacking measure010104 statistics & probabilityMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsConical upper density0101 mathematicsPorosityPorosityFinite lower densityMathematicsAdvances in Mathematics
researchProduct

Existence of doubling measures via generalised nested cubes

2012

Working on doubling metric spaces, we construct generalised dyadic cubes adapting ultrametric structure. If the space is complete, then the existence of such cubes and the mass distribution principle lead into a simple proof for the existence of doubling measures. As an application, we show that for each $\epsilon>0$ there is a doubling measure having full measure on a set of packing dimension at most $\epsilon$.

Applied MathematicsGeneral MathematicsDyadic cubesStructure (category theory)Space (mathematics)Measure (mathematics)CombinatoricsMetric spacePacking dimension28C15 (Primary) 54E50 (Secondary)Mathematics - Classical Analysis and ODEsSimple (abstract algebra)Classical Analysis and ODEs (math.CA)FOS: MathematicsUltrametric spaceMathematicsProceedings of the American Mathematical Society
researchProduct

Nonsymmetric conical upper density and $k$-porosity

2017

We study how the Hausdorff measure is distributed in nonsymmetric narrow cones in R n \mathbb {R}^n . As an application, we find an upper bound close to n − k n-k for the Hausdorff dimension of sets with large k k -porosity. With k k -porous sets we mean sets which have holes in k k different directions on every small scale.

Scale (ratio)Applied MathematicsGeneral Mathematics010102 general mathematicsMathematicsofComputing_GENERALGeometryConical surface01 natural sciencesUpper and lower bounds010104 statistics & probabilityMathematics - Classical Analysis and ODEsHausdorff dimensionClassical Analysis and ODEs (math.CA)FOS: MathematicsHausdorff measure0101 mathematicsPorosityMathematics
researchProduct

A note on correlation and local dimensions

2015

Abstract Under very mild assumptions, we give formulas for the correlation and local dimensions of measures on the limit set of a Moran construction by means of the data used to construct the set.

Correlation dimensionPure mathematicslocal dimensionfinite clustering propertyGeneral MathematicsApplied Mathematics010102 general mathematicsta111General Physics and AstronomyStatistical and Nonlinear Physics01 natural sciencescorrelation dimension010305 fluids & plasmasSet (abstract data type)CombinatoricsCorrelationmoran constructionMathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsLimit setConstruct (philosophy)Mathematics
researchProduct

Dynamics of the scenery flow and geometry of measures

2015

We employ the ergodic theoretic machinery of scenery flows to address classical geometric measure theoretic problems on Euclidean spaces. Our main results include a sharp version of the conical density theorem, which we show to be closely linked to rectifiability. Moreover, we show that the dimension theory of measure-theoretical porosity can be reduced back to its set-theoretic version, that Hausdorff and packing dimensions yield the same maximal dimension for porous and even mean porous measures, and that extremal measures exist and can be chosen to satisfy a generalized notion of self-similarity. These are sharp general formulations of phenomena that had been earlier found to hold in a n…

Pure mathematicsgeometryMatemáticasGeneral MathematicsDimension (graph theory)CONICAL DENSITIESDynamical Systems (math.DS)Measure (mathematics)Matemática Pura//purl.org/becyt/ford/1 [https]RECITFIABILITYEuclidean geometryClassical Analysis and ODEs (math.CA)FOS: MathematicsErgodic theoryscenery flowMathematics - Dynamical SystemsDIMENSIONMathematicsmatematiikkamathematicsta111measures//purl.org/becyt/ford/1.1 [https]Hausdorff spacePOROSITYConical surfacePrimary 28A80 Secondary 37A10 28A75 28A33Flow (mathematics)Mathematics - Classical Analysis and ODEsFRACTAL DISTRIBUTIONSDimension theorygeometriaCIENCIAS NATURALES Y EXACTAS
researchProduct

Structure of equilibrium states on self-affine sets and strict monotonicity of affinity dimension

2017

A fundamental problem in the dimension theory of self-affine sets is the construction of high- dimensional measures which yield sharp lower bounds for the Hausdorff dimension of the set. A natural strategy for the construction of such high-dimensional measures is to investigate measures of maximal Lyapunov dimension; these measures can be alternatively interpreted as equilibrium states of the singular value function introduced by Falconer. Whilst the existence of these equilibrium states has been well-known for some years their structure has remained elusive, particularly in dimensions higher than two. In this article we give a complete description of the equilibrium states of the singular …

Lyapunov functionPure mathematicsGeneral Mathematics010102 general mathematicsDimension (graph theory)Monotonic functionFunction (mathematics)01 natural sciencessymbols.namesakeHausdorff dimension0103 physical sciencessymbols010307 mathematical physicsUniquenessAffine transformation0101 mathematicsDimension theory (algebra)MathematicsProceedings of the London Mathematical Society
researchProduct

Dimensions of random affine code tree fractals

2014

We calculate the almost sure Hausdorff dimension for a general class of random affine planar code tree fractals. The set of probability measures describing the randomness includes natural measures in random $V$-variable and homogeneous Markov constructions.

Discrete mathematicsCode (set theory)v-variable fractalsApplied MathematicsGeneral MathematicsProbability (math.PR)ta111Dynamical Systems (math.DS)self-similar setsTree (descriptive set theory)Box countingFractalIterated function systemMathematics - Classical Analysis and ODEsHausdorff dimensionClassical Analysis and ODEs (math.CA)FOS: MathematicsAffine transformationMathematics - Dynamical Systems28A80 60D05 37H99RandomnessMathematics - ProbabilityMathematics
researchProduct

Self-affine sets with fibered tangents

2016

We study tangent sets of strictly self-affine sets in the plane. If a set in this class satisfies the strong separation condition and projects to a line segment for sufficiently many directions, then for each generic point there exists a rotation $\mathcal O$ such that all tangent sets at that point are either of the form $\mathcal O((\mathbb R \times C) \cap B(0,1))$, where $C$ is a closed porous set, or of the form $\mathcal O((\ell \times \{ 0 \}) \cap B(0,1))$, where $\ell$ is an interval.

Pure mathematicsClass (set theory)General MathematicsDynamical Systems (math.DS)Interval (mathematics)iterated function system01 natural sciencesself-affine setGeneric pointLine segmentstrictly self-affine sets0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsPoint (geometry)Porous set0101 mathematicsMathematics - Dynamical SystemsMathematicsApplied Mathematics010102 general mathematicsta111Tangenttangent setsTangent setMathematics - Classical Analysis and ODEs010307 mathematical physicsAffine transformation
researchProduct

Genericity of dimension drop on self-affine sets

2017

We prove that generically, for a self-affine set in $\mathbb{R}^d$, removing one of the affine maps which defines the set results in a strict reduction of the Hausdorff dimension. This gives a partial positive answer to a folklore open question.

Statistics and ProbabilityPure mathematicsthermodynamic formalismDynamical Systems (math.DS)01 natural sciencesself-affine setsingular value functionAffine combinationAffine hullClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics - Dynamical Systems0101 mathematicsMathematicsDiscrete mathematicsta111010102 general mathematicsMinkowski–Bouligand dimensionproducts of matricesEffective dimension010101 applied mathematicsAffine coordinate systemMathematics - Classical Analysis and ODEsHausdorff dimensionAffine transformationStatistics Probability and UncertaintyStatistics & Probability Letters
researchProduct

Overlapping self-affine sets of Kakeya type

2009

We compute the Minkowski dimension for a family of self-affine sets on the plane. Our result holds for every (rather than generic) set in the class. Moreover, we exhibit explicit open subsets of this class where we allow overlapping, and do not impose any conditions on the norms of the linear maps. The family under consideration was inspired by the theory of Kakeya sets.

Class (set theory)Applied MathematicsGeneral Mathematics010102 general mathematicsMinkowski–Bouligand dimensionDynamical Systems (math.DS)Type (model theory)16. Peace & justice01 natural sciencesCombinatoricsSet (abstract data type)Mathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics28A80 37C45010307 mathematical physicsAffine transformationMathematics - Dynamical Systems0101 mathematicsMathematicsErgodic Theory and Dynamical Systems
researchProduct

Local multifractal analysis in metric spaces

2013

We study the local dimensions and local multifractal properties of measures on doubling metric spaces. Our aim is twofold. On one hand, we show that there are plenty of multifractal type measures in all metric spaces which satisfy only mild regularity conditions. On the other hand, we consider a local spectrum that can be used to gain finer information on the local behaviour of measures than its global counterpart.

Pure mathematicsApplied MathematicsGeneral Physics and AstronomyMetric Geometry (math.MG)Statistical and Nonlinear PhysicsDynamical Systems (math.DS)Multifractal systemType (model theory)28A80 28D20 54E50Metric spaceLocal spectrumMathematics - Metric GeometryMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics - Dynamical SystemsMathematical PhysicsMathematicsNonlinearity
researchProduct

Local conical dimensions for measures

2012

AbstractWe study the decay of μ(B(x,r)∩C)/μ(B(x,r)) asr↓ 0 for different kinds of measures μ on ℝnand various conesCaroundx. As an application, we provide sufficient conditions that imply that the local dimensions can be calculated via cones almost everywhere.

PhysicsMathematics - Classical Analysis and ODEsGeneral MathematicsPrimary 28A80 Secondary 28A75 28A12ta111Mathematical analysisClassical Analysis and ODEs (math.CA)FOS: MathematicsAlmost everywhereConical surface
researchProduct

Dimension of self-affine sets for fixed translation vectors

2018

An affine iterated function system is a finite collection of affine invertible contractions and the invariant set associated to the mappings is called self-affine. In 1988, Falconer proved that, for given matrices, the Hausdorff dimension of the self-affine set is the affinity dimension for Lebesgue almost every translation vectors. Similar statement was proven by Jordan, Pollicott, and Simon in 2007 for the dimension of self-affine measures. In this article, we have an orthogonal approach. We introduce a class of self-affine systems in which, given translation vectors, we get the same results for Lebesgue almost all matrices. The proofs rely on Ledrappier-Young theory that was recently ver…

Pure mathematicsEuclidean spaceGeneral Mathematics010102 general mathematicsTranslation (geometry)Lebesgue integration01 natural sciencesMeasure (mathematics)010104 statistics & probabilitysymbols.namesakeIterated function systemHausdorff dimensionsymbolsAffine transformation0101 mathematicsInvariant (mathematics)MathematicsJournal of the London Mathematical Society
researchProduct

On Upper Conical Density Results

2010

We report a recent development on the theory of upper conical densities. More precisely, we look at what can be said in this respect for other measures than just the Hausdorff measure. We illustrate the methods involved by proving a result for the packing measure and for a purely unrectifiable doubling measure.

Geometric measure theoryMathematical analysisMathematics::Metric GeometryDimension functionHausdorff measureDevelopment (differential geometry)Conical surfaceMeasure (mathematics)Mathematics
researchProduct

Rigidity of quasisymmetric mappings on self-affine carpets

2016

We show that the class of quasisymmetric maps between horizontal self-affine carpets is rigid. Such maps can only exist when the dimensions of the carpets coincide, and in this case, the quasisymmetric maps are quasi-Lipschitz. We also show that horizontal self-affine carpets are minimal for the conformal Assouad dimension.

Class (set theory)Pure mathematicsMathematics::Dynamical SystemsGeneral Mathematicsquasisymmetric mapsMathematics::General TopologyPhysics::OpticsConformal mapRigidity (psychology)01 natural sciencesDimension (vector space)0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometry0101 mathematicsself-affine carpetsMathematicsta111010102 general mathematicsPhysics::Classical PhysicsMathematics - Classical Analysis and ODEs010307 mathematical physicsAffine transformation28A80 37F35 30C62 30L10
researchProduct

Geometric rigidity of a class of fractal sets

2017

We study geometric rigidity of a class of fractals, which is slightly larger than the collection of self-conformal sets. Namely, using a new method, we shall prove that a set of this class is contained in a smooth submanifold or is totally spread out. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Set (abstract data type)Class (set theory)Pure mathematicsIterated function systemFractalGeneral MathematicsFOS: MathematicsRigidity (psychology)Fractal setDynamical Systems (math.DS)Mathematics - Dynamical SystemsSubmanifoldMathematicsMathematische Nachrichten
researchProduct

Scenery Flow, Conical Densities, and Rectifiability

2015

We present an application of the recently developed ergodic theoretic machinery on scenery flows to a classical geometric measure theoretic problem in Euclidean spaces. We also review the enhancements to the theory required in our work. Our main result is a sharp version of the conical density theorem, which we reduce to a question on rectifiability.

Work (thermodynamics)Flow (mathematics)Mathematical analysisEuclidean geometryErgodic theoryConical surfaceDensity theoremMeasure (mathematics)Mathematics
researchProduct

Ledrappier-Young formula and exact dimensionality of self-affine measures

2017

In this paper, we solve the long standing open problem on exact dimensionality of self-affine measures on the plane. We show that every self-affine measure on the plane is exact dimensional regardless of the choice of the defining iterated function system. In higher dimensions, under certain assumptions, we prove that self-affine and quasi self-affine measures are exact dimensional. In both cases, the measures satisfy the Ledrappier-Young formula. peerReviewed

local dimensionPlane (geometry)General MathematicsOpen problem010102 general mathematicsMathematical analysista111Dynamical Systems (math.DS)01 natural sciencesMeasure (mathematics)self-affine set010101 applied mathematicsIterated function systemself-affine measureHausdorff dimension37C45 28A80FOS: MathematicsApplied mathematicsAffine transformation0101 mathematicsMathematics - Dynamical Systemshausdorff dimensionMathematicsCurse of dimensionality
researchProduct

Weak separation condition, Assouad dimension, and Furstenberg homogeneity

2015

We consider dimensional properties of limit sets of Moran constructions satisfying the finite clustering property. Just to name a few, such limit sets include self-conformal sets satisfying the weak separation condition and certain sub-self-affine sets. In addition to dimension results for the limit set, we manage to express the Assouad dimension of any closed subset of a self-conformal set by means of the Hausdorff dimension. As an interesting consequence of this, we show that a Furstenberg homogeneous self-similar set in the real line satisfies the weak separation condition. We also exhibit a self-similar set which satisfies the open set condition but fails to be Furstenberg homogeneous.

General MathematicsHomogeneity (statistics)ta111Open setPrimary 28A80 Secondary 37C45 28D05 28A50Moran constructioniterated function systemSet (abstract data type)CombinatoricsDimension (vector space)dimensionMathematics - Classical Analysis and ODEsweak separation conditionClassical Analysis and ODEs (math.CA)FOS: MathematicsLimit (mathematics)Limit setCluster analysisReal lineMathematics
researchProduct

Local structure of self-affine sets

2011

The structure of a self-similar set with open set condition does not change under magnification. For self-affine sets the situation is completely different. We consider planar self-affine Cantor sets E of the type studied by Bedford, McMullen, Gatzouras and Lalley, for which the projection onto the horizontal axis is an interval. We show that within small square neighborhoods of almost each point x in E, with respect to many product measures on address space, E is well approximated by product sets of an interval and a Cantor set. Even though E is totally disconnected, the limit sets have the product structure with interval fibres, reminiscent to the view of attractors of chaotic differentia…

Pure mathematicsMathematics::Dynamical SystemsApplied MathematicsGeneral Mathematicsta111Open setStructure (category theory)MagnificationDynamical Systems (math.DS)Local structureSet (abstract data type)FOS: MathematicsAffine transformationMathematics - Dynamical Systems28A80 37D45MathematicsErgodic Theory and Dynamical Systems
researchProduct

Separation conditions on controlled Moran constructions

2017

It is well known that the open set condition and the positivity of the $t$-dimensional Hausdorff measure are equivalent on self-similar sets, where $t$ is the zero of the topological pressure. We prove an analogous result for a class of Moran constructions and we study different kinds of Moran constructions with this respect.

Class (set theory)Pure mathematicsAlgebra and Number Theory010102 general mathematicsSeparation (statistics)Zero (complex analysis)Open setDynamical Systems (math.DS)01 natural sciencesTopological pressure0103 physical sciencesFOS: MathematicsQuantitative Biology::Populations and EvolutionHausdorff measure010307 mathematical physicsMathematics - Dynamical Systems0101 mathematicsMathematicsFundamenta Mathematicae
researchProduct

Measures with predetermined regularity and inhomogeneous self-similar sets

2016

We show that if $X$ is a uniformly perfect complete metric space satisfying the finite doubling property, then there exists a fully supported measure with lower regularity dimension as close to the lower dimension of $X$ as we wish. Furthermore, we show that, under the condensation open set condition, the lower dimension of an inhomogeneous self-similar set $E_C$ coincides with the lower dimension of the condensation set $C$, while the Assouad dimension of $E_C$ is the maximum of the Assouad dimensions of the corresponding self-similar set $E$ and the condensation set $C$. If the Assouad dimension of $C$ is strictly smaller than the Assouad dimension of $E$, then the upper regularity dimens…

Pure mathematicsAssouad dimensionGeneral MathematicsOpen set01 natural sciencesMeasure (mathematics)Complete metric space54E35010305 fluids & plasmasSet (abstract data type)Dimension (vector space)0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematicsinhomogeneous self-similar setMathematics::Metric Geometry28A200101 mathematicsMathematics010102 general mathematicsta111doubling metric space54F45lower dimensionMathematics - Classical Analysis and ODEs28A75uniform perfectness
researchProduct

Self-affine sets in analytic curves and algebraic surfaces

2018

We characterize analytic curves that contain non-trivial self-affine sets. We also prove that compact algebraic surfaces do not contain non-trivial self-affine sets. peerReviewed

Pure mathematicsGeneral Mathematicsta111010102 general mathematicsDynamical Systems (math.DS)01 natural sciencesself-affine setanalytic curvefractals0103 physical sciencesAlgebraic surfacealgebraic surfaceFOS: Mathematicsfraktaalit010307 mathematical physicsAffine transformationMathematics - Dynamical Systems0101 mathematicsMathematics
researchProduct

Structure of distributions generated by the scenery flow

2015

We expand the ergodic theory developed by Furstenberg and Hochman on dynamical systems that are obtained from magnifications of measures. We prove that any fractal distribution in the sense of Hochman is generated by a uniformly scaling measure, which provides a converse to a regularity theorem on the structure of distributions generated by the scenery flow. We further show that the collection of fractal distributions is closed under the weak topology and, moreover, is a Poulsen simplex, that is, extremal points are dense. We apply these to show that a Baire generic measure is as far as possible from being uniformly scaling: at almost all points, it has all fractal distributions as tangent …

Dynamical systems theoryWeak topologyMatemáticasGeneral MathematicsdistributionsDynamical Systems (math.DS)Scenery flowMeasure (mathematics)Matemática PuraFractalPrimary 37A10 28A80 Secondary 28A33 28A75Fractal distributionClassical Analysis and ODEs (math.CA)FOS: MathematicsErgodic theoryscenery flowMathematics - Dynamical SystemsScalingMathematicsCP-processergodic theoryMathematical analysista111Distribution (mathematics)Flow (mathematics)Mathematics - Classical Analysis and ODEsCIENCIAS NATURALES Y EXACTAS
researchProduct

Local dimensions in Moran constructions

2015

We study the dimensional properties of Moran sets and Moran measures in doubling metric spaces. In particular, we consider local dimensions and $L^q$-dimensions. We generalize and extend several existing results in this area.

Physics::Physics and SocietyDiscrete mathematics28A12 28A80Applied Mathematics010102 general mathematicsGeneral Physics and AstronomyStatistical and Nonlinear Physics01 natural sciences010305 fluids & plasmasMetric spaceMathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsQuantitative Biology::Populations and Evolution0101 mathematicsMathematical PhysicsMathematicsNonlinearity
researchProduct

Iterated function systems: natural measure and local structure

2003

joukotmatematiikkaIFSfraktaalititeroitu funktiosysteemi
researchProduct