0000000000597159

AUTHOR

Souraya Benalia

Application of deep convolutional neural networks for the detection of anthracnose in olives using VIS/NIR hyperspectral images

Anthracnose is one of the primary diseases that affect olive production before and after harvest, causing severe damage and economic losses. The objective of this work is to detect this disease in the early stages, using hyperspectral images and advanced modelling techniques of Deep Learning (DL) and convolutional neural networks (CNN). The olives were artificially inoculated with the fungus. Hyperspectral images (450–1050 nm) of each olive were acquired until visual symptoms of the disease were observed, in some cases up to 9 days. The olives were classified into two classes: control, inoculated with water, and fungi composed of olives inoculated with the fungus. The ResNet101 architecture…

research product

Application of deep convolutional neural networks for the detection of anthracnose in olives using VIS/NIR hyperspectral images

Abstract Anthracnose is one of the primary diseases that affect olive production before and after harvest, causing severe damage and economic losses. The objective of this work is to detect this disease in the early stages, using hyperspectral images and advanced modelling techniques of Deep Learning (DL) and convolutional neural networks (CNN). The olives were artificially inoculated with the fungus. Hyperspectral images (450–1050 nm) of each olive were acquired until visual symptoms of the disease were observed, in some cases up to 9 days. The olives were classified into two classes: control, inoculated with water, and fungi composed of olives inoculated with the fungus. The ResNet101 arc…

research product