0000000000598879
AUTHOR
András Berkó
Tunneling induced decomposition of Mo(CO)(6) onto TiO2(110) surface
International audience; Tunneling induced decomposition of Mo(CO)(6) from the gas phase was studied on TiO2(110) surface by scanning tunneling microscopy (STM) and spectroscopy (STS). The efficiency of the procedure was followed by measuring the dot volume as a proportional indicator of the amount of the decomposed precursor. It was found that below 1 x 10(-5) Pa background pressure of Mo(CO)(6), there is no measurable effect and above 1 x 10(-4) Pa, the nanodot size is too large compared to the curvature of the tip (20-40 nm). A threshold bias of +3.1(+/- 0.1) V on the sample was measured for the decomposition of Mo(CO)(6) in gas ambient. In the absence of the precursor, dot formation was …
Monolayer Formation of Molybdenum Carbonyl on Cu(111) Revealed by Scanning Tunneling Microscopy and Density Functional Theory
International audience; Molybdenum carbonyl Mo(CO)(6) was adsorbed on the Cu(111) surface at 160 K in the monolayer coverage range and studied by scanning tunneling microscopy. A well-ordered monolayer of hexacarbonyl molecules was observed experimentally for the first time. The monolayer has a hexagonal structure compatible with a (root 7 x root 7)R19 superlattice on the copper (111) plane. The arrangement and orientation of the molecules on the surface were determined by density functional theory calculations, including van der Waals interactions. The comparison of adsorption and cohesive energies reveals that the molecule-substrate interaction is stronger than the intermolecular one, whi…