0000000000598970

AUTHOR

Giorgio Amendola

showing 5 related works from this author

Peptidyl Vinyl Ketone Irreversible Inhibitors of Rhodesain: Modifications of the P2 Fragment.

2020

In this paper, we report the design, synthesis and biological investigation of a series of peptidyl vinyl ketones obtained by modifying the P2 fragment of previously reported highly potent inhibitors of rhodesain, the main cysteine protease of Trypanosoma brucei rhodesiense. Investigation of the structure-activity relationship led us to identify new rhodesain inhibitors endowed with an improved selectivity profile (a selectivity index of up to 22 000 towards the target enzyme), and/or an improved antitrypanosomal activity in the sub-micromolar range.

KetoneStereochemistryTrypanosoma brucei bruceiTrypanosoma bruceiCysteine Proteinase Inhibitors01 natural sciencesBiochemistrycathepsin LCathepsin LStructure-Activity RelationshipParasitic Sensitivity TestsDrug DiscoveryTrypanosoma bruceiGeneral Pharmacology Toxicology and PharmaceuticsPharmacologychemistry.chemical_classificationrhodesainbiologyDose-Response Relationship DrugMolecular Structure010405 organic chemistryOrganic ChemistryselectivityTrypanosoma brucei rhodesienseKetonesbiology.organism_classificationCysteine proteaseTrypanocidal Agents0104 chemical sciences010404 medicinal & biomolecular chemistryCysteine EndopeptidasesEnzymechemistrybiology.proteinMolecular MedicineMichael acceptorSelectivityPeptidesChemMedChem
researchProduct

Development of Novel Benzodiazepine-Based Peptidomimetics as Inhibitors of Rhodesain from Trypanosoma brucei rhodesiense.

2020

Starting from the reversible rhodesain inhibitors 1 a-c, which have Ki values towards the target protease in the low-micromolar range, we have designed a series of peptidomimetics, 2 a-g, that contain a benzodiazepine scaffold as a β-turn mimetic; they are characterized by a specific peptide sequence for the inhibition of rhodesain. Considering that irreversible inhibition is strongly desirable in the case of a parasitic target, a vinyl ester moiety acting as Michael-acceptor was introduced as the warhead; this portion was functionalized in order to evaluate the size of corresponding enzyme pocket that could accommodate this substituent. With this investigation, we identified an irreversibl…

Trypanosoma brucei rhodesiensehuman African trypanosomiasiStereochemistryPeptidomimeticmedicine.medical_treatmentSubstituentAntiprotozoal AgentsTrypanosoma bruceiCysteine Proteinase Inhibitors01 natural sciencesBiochemistrychemistry.chemical_compoundBenzodiazepinesStructure-Activity RelationshipDrug DevelopmentParasitic Sensitivity TestsDrug DiscoverymedicineMoietyTrypanosoma bruceiGeneral Pharmacology Toxicology and PharmaceuticsPeptide sequencePharmacologyrhodesainProteasebiologyDose-Response Relationship DrugMolecular Structure010405 organic chemistryOrganic ChemistryTrypanosoma brucei rhodesiensebenzodiazepine scaffoldbiology.organism_classificationpeptidomimetic0104 chemical sciences010404 medicinal & biomolecular chemistryCysteine EndopeptidaseschemistryMolecular MedicinePeptidomimeticsMichael acceptorLead compoundChemMedChem
researchProduct

Optimization Strategy of Novel Peptide-Based Michael Acceptors for the Treatment of Human African Trypanosomiasis

2019

This paper describes an optimization strategy of the highly active vinyl ketone 3 which was recognized as a strong inhibitor of rhodesain of Trypanosoma brucei rhodesiense, endowed with a ksecond v...

Trypanosoma brucei rhodesienseStrong inhibitorKetoneStereochemistryProtein ConformationPeptide01 natural sciences03 medical and health sciencesStructure-Activity RelationshipSUBSTRATEDrug DiscoverymedicineHumansAfrican trypanosomiasisSulfonesBIOLOGICAL EVALUATION030304 developmental biologyWARHEADchemistry.chemical_classification0303 health sciencesMolecular StructureChemistryDERIVATIVESTrypanosoma brucei rhodesienseCYSTEINE PROTEASES RHODESAIN BIOLOGICAL EVALUATION CATHEPSIN-L INHIBITORS BRUCEI PEPTIDOMIMETICS FALCIPAIN-2 DERIVATIVES SUBSTRATE WARHEADBRUCEImedicine.diseaseFALCIPAIN-2Trypanocidal Agents0104 chemical sciences010404 medicinal & biomolecular chemistryCysteine EndopeptidasesTrypanosomiasis AfricanCYSTEINE PROTEASES RHODESAINCATHEPSIN-LMolecular MedicineINHIBITORSPEPTIDOMIMETICS
researchProduct

Development of Novel Peptide-Based Michael Acceptors Targeting Rhodesain and Falcipain-2 for the Treatment of Neglected Tropical Diseases (NTDs)

2017

This paper describes the development of a class of peptide-based inhibitors as novel antitrypanosomal and antimalarial agents. The inhibitors are based on a characteristic peptide sequence for the inhibition of the cysteine proteases rhodesain of Trypanosoma brucei rhodesiense and falcipain-2 of Plasmodium falciparum. We exploited the reactivity of novel unsaturated electrophilic functions such as vinyl-sulfones, -ketones, -esters, and -nitriles. The Michael acceptors inhibited both rhodesain and falcipain-2, at nanomolar and micromolar levels, respectively. In particular, the vinyl ketone 3b has emerged as a potent rhodesain inhibitor (k2nd = 67 × 106 M-1 min-1), endowed with a picomolar b…

0301 basic medicineCathepsin LAntimalarialPeptideHeLa Cell01 natural sciencesCysteine Proteinase InhibitorDipeptideDrug DiscoveryPeptide sequencechemistry.chemical_classificationTrypanocidal AgentbiologyNeglected DiseasesStereoisomerismDipeptidesTrypanocidal AgentsMAJOR CYSTEINE PROTEASE PLASMODIUM-FALCIPARUM TRYPANOSOMA-BRUCEI CONFORMATIONAL-ANALYSIS BIOLOGICAL EVALUATION HIGHLY POTENT VINYL-ESTER INHIBITORS PEPTIDOMIMETICS SUBSTRATEMolecular Docking SimulationCysteine EndopeptidasesBiochemistryMolecular MedicineHumanProteasesNeglected DiseaseStereochemistryPhenylalaninePlasmodium falciparumTrypanosoma brucei bruceiCysteine Proteinase InhibitorsMolecular Dynamics SimulationTrypanosoma bruceiAntimalarialsStructure-Activity Relationship03 medical and health sciencesparasitic diseasesHumansStructure–activity relationship010405 organic chemistryDrug Discovery3003 Pharmaceutical ScienceHydrogen BondingTrypanosoma brucei rhodesiensePlasmodium falciparumbiology.organism_classificationMalaria0104 chemical sciencesTrypanosomiasis African030104 developmental biologychemistryCarbamateCarbamatesCysteine EndopeptidaseHeLa CellsCysteineJournal of Medicinal Chemistry
researchProduct

Lead Discovery of SARS-CoV-2 Main Protease Inhibitors through Covalent Docking-Based Virtual Screening

2021

During almost all 2020, coronavirus disease 2019 (COVID-19) pandemic has constituted the major risk for the worldwide health and economy, propelling unprecedented efforts to discover drugs for its prevention and cure. At the end of the year, these efforts have culminated with the approval of vaccines by the American Food and Drug Administration (FDA) and the European Medicines Agency (EMA) giving new hope for the future. On the other hand, clinical data underscore the urgent need for effective drugs to treat COVID-19 patients. In this work, we embarked on a virtual screening campaign against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Mpro chymotrypsin-like cysteine pro…

Coronavirus disease 2019 (COVID-19)General Chemical Engineeringmedicine.medical_treatmentSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)In silicoComputational biologyLibrary and Information Sciences01 natural sciencesMolecular Docking SimulationAntiviral AgentsArticleDocking (dog)0103 physical sciencesmedicineHumansProtease InhibitorsPandemicsVirtual screeningProtease010304 chemical physicsbusiness.industrySARS-CoV-2COVID-19General Chemistry0104 chemical sciencesComputer Science ApplicationsMolecular Docking Simulation010404 medicinal & biomolecular chemistryTarget proteinbusinessJournal of Chemical Information and Modeling
researchProduct