0000000000598970

AUTHOR

Giorgio Amendola

Peptidyl Vinyl Ketone Irreversible Inhibitors of Rhodesain: Modifications of the P2 Fragment.

In this paper, we report the design, synthesis and biological investigation of a series of peptidyl vinyl ketones obtained by modifying the P2 fragment of previously reported highly potent inhibitors of rhodesain, the main cysteine protease of Trypanosoma brucei rhodesiense. Investigation of the structure-activity relationship led us to identify new rhodesain inhibitors endowed with an improved selectivity profile (a selectivity index of up to 22 000 towards the target enzyme), and/or an improved antitrypanosomal activity in the sub-micromolar range.

research product

Development of Novel Benzodiazepine-Based Peptidomimetics as Inhibitors of Rhodesain from Trypanosoma brucei rhodesiense.

Starting from the reversible rhodesain inhibitors 1 a-c, which have Ki values towards the target protease in the low-micromolar range, we have designed a series of peptidomimetics, 2 a-g, that contain a benzodiazepine scaffold as a β-turn mimetic; they are characterized by a specific peptide sequence for the inhibition of rhodesain. Considering that irreversible inhibition is strongly desirable in the case of a parasitic target, a vinyl ester moiety acting as Michael-acceptor was introduced as the warhead; this portion was functionalized in order to evaluate the size of corresponding enzyme pocket that could accommodate this substituent. With this investigation, we identified an irreversibl…

research product

Optimization Strategy of Novel Peptide-Based Michael Acceptors for the Treatment of Human African Trypanosomiasis

This paper describes an optimization strategy of the highly active vinyl ketone 3 which was recognized as a strong inhibitor of rhodesain of Trypanosoma brucei rhodesiense, endowed with a ksecond v...

research product

Development of Novel Peptide-Based Michael Acceptors Targeting Rhodesain and Falcipain-2 for the Treatment of Neglected Tropical Diseases (NTDs)

This paper describes the development of a class of peptide-based inhibitors as novel antitrypanosomal and antimalarial agents. The inhibitors are based on a characteristic peptide sequence for the inhibition of the cysteine proteases rhodesain of Trypanosoma brucei rhodesiense and falcipain-2 of Plasmodium falciparum. We exploited the reactivity of novel unsaturated electrophilic functions such as vinyl-sulfones, -ketones, -esters, and -nitriles. The Michael acceptors inhibited both rhodesain and falcipain-2, at nanomolar and micromolar levels, respectively. In particular, the vinyl ketone 3b has emerged as a potent rhodesain inhibitor (k2nd = 67 × 106 M-1 min-1), endowed with a picomolar b…

research product

Lead Discovery of SARS-CoV-2 Main Protease Inhibitors through Covalent Docking-Based Virtual Screening

During almost all 2020, coronavirus disease 2019 (COVID-19) pandemic has constituted the major risk for the worldwide health and economy, propelling unprecedented efforts to discover drugs for its prevention and cure. At the end of the year, these efforts have culminated with the approval of vaccines by the American Food and Drug Administration (FDA) and the European Medicines Agency (EMA) giving new hope for the future. On the other hand, clinical data underscore the urgent need for effective drugs to treat COVID-19 patients. In this work, we embarked on a virtual screening campaign against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Mpro chymotrypsin-like cysteine pro…

research product