0000000000599230
AUTHOR
Gilles Ferrand
3D modeling from the onset of the SN to the full-fledged SNR: Role of an initial ejecta anisotropy on matter mixing
The aim of this work is to bridge the gap between CC SNe and their remnants by investigating how post-explosion anisotropies in the ejecta influence the structure and chemical properties of the remnant at later times. We performed three-dimensional magneto-hydrodynamical simulations starting soon after the SN event and following the evolution of the system in the circumstellar medium (consisting of the wind of the stellar progenitor), for 5000 years, obtaining the physical scenario of a SNR. Here we focused the analysis on the case of a progenitor red supergiant of 19.8 M_sun. We also investigated how a post-explosion large-scale anisotropy in the SN affects the ejecta distribution and the …
Three-dimensional Simulations from Supernovae to Their Supernova Remnants: The Dynamical and Chemical Evolution of Supernova 1987A
Hydrodynamic simulations unravel the progenitor-supernova-remnant connection in SN 1987A
(Abridged) We aim at linking the dynamical and radiative properties of the remnant of SN 1987A to the geometrical and physical characteristics of the parent aspherical SN explosion and to the internal structure of its progenitor star. We performed 3D hydrodynamic simulations which describe the long-term evolution of SN 1987A from the onset of the SN to the full-fledged remnant at the age of 50 years, accounting for the pre-SN structure of the progenitor star. The simulations include all physical processes relevant for the complex phases of SN evolution and for the interaction of the SNR with the highly inhomogeneous ambient environment around SN 1987A. From the simulations, we synthesize ob…