0000000000599619

AUTHOR

A. Herlert

showing 4 related works from this author

Cadmium mass measurements between the neutron shell closures at N=50 and 82

2010

International audience; The mass values of the neutron-deficient cadmium isotopes 99−109Cd and of the neutronrich isotopes 114,120,122−124,126,128Cd have been measured using ISOLTRAP. The behavior of the separation energies of the cadmium isotopes from N = 50 to 82 is discussed.

CadmiumIsotopehigh-precision mass measurementsChemistryStable isotope ratioPenning trapRadiochemistrychemistry.chemical_element020206 networking & telecommunications02 engineering and technology[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ISOLTRAP7. Clean energyISOLTRAPcadmium massesIsotope separationlaw.inventionlawIsotopes of cadmium0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingNeutron21.10.Dr 21.30.Fe 27.60.+j 32.10.BiNucleon
researchProduct

First glimpse of the $N=82$ shell closure below $Z=50$ from masses of neutron-rich cadmium isotopes and isomers

2020

We probe the $N=82$ nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of $^{132}$Cd offers the first value of the $N=82$, two-neutron shell gap below $Z=50$ and confirms the phenomenon of mutually enhanced magicity at $^{132}$Sn. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in $^{129}$Cd and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalization group.

Nuclear Theorynucl-thIsòtops[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear TheoryFOS: Physical sciencesEspectroscòpia nuclear[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exNuclear spectroscopyNuclear Theory (nucl-th)IsotopesNuclear Physics - TheoryPhysics::Atomic and Molecular Clustersddc:530Nuclear Physics - ExperimentPräzisionsexperimente - Abteilung BlaumNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentNuclear Physics
researchProduct

Mass measurements beyond the major r-process waiting point $^{80}$Zn

2008

High-precision mass measurements on neutron-rich zinc isotopes 71m,72-81Zn have been performed with the Penning trap mass spectrometer ISOLTRAP. For the first time the mass of 81Zn has been experimentally determined. This makes 80Zn the first of the few major waiting points along the path of the astrophysical rapid neutron capture process where neutron separation energy and neutron capture Q-value are determined experimentally. As a consequence, the astrophysical conditions required for this waiting point and its associated abundance signatures to occur in r-process models can now be mapped precisely. The measurements also confirm the robustness of the N = 50 shell closure for Z = 30 farthe…

Binding energies and massessupernovaeNucleosynthesis in novaeand other explosive environmentsFOS: Physical sciencesNuclear Physics - Experiment59<=A<=89[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experiment
researchProduct

Magnetic field stabilization for high-accuracy mass measurements on exotic nuclides

2007

The magnetic-field stability of a mass spectrometer plays a crucial role in precision mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of instabilities are temperature fluctuations in the vicinity of the trap and pressure fluctuations in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the fluctuations by at least one order of magnitude downto dT=+/-5mK and dp=+/-50mtorr has been achieved, which corresponds to a relative frequency change of 2.7x10^{-…

Physics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)FOS: Physical sciencesNuclear Physics - ExperimentInstrumentation and Detectors (physics.ins-det)Physics::Atomic PhysicsDetectors and Experimental TechniquesNuclear ExperimentPhysics - Atomic Physics
researchProduct