0000000000600156

AUTHOR

Walter Snoeys

showing 4 related works from this author

Update on the TowerJazz CMOS DMAPS development for the ATLAS ITk

2019

The upgrade of the ATLAS tracking detector for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. For the de- velopment of depleted CMOS sensors for ATLAS we combined small electrodes with minimal capacitance and advanced processing for fully depleted active sensor volume to achieve radiation hard CMOS sensors in line with ATLAS ITk specifications. Based on initial studies on the prototype sensor “TowerJazz Investigator” we have now developed, produced and tested a first full-size depleted CMOS sensor based on the 180nm TowerJazz imag- ing process, the so-called “MALTA” sensor. The sensor combines special low-noise…

CMOS sensorLarge Hadron Colliderbusiness.industryComputer sciencePhysics::Instrumentation and DetectorsDetectorElectronic detector readout concepts (solid-state) ; Front-end electronics for detector readout ; Particle tracking detectors ; Radiation-hard detectorsChipCapacitancemedicine.anatomical_structureUpgradeCMOSAtlas (anatomy)medicineComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMSDetectors and Experimental TechniquesbusinessComputer hardware
researchProduct

MALTA: an asynchronous readout CMOS monolithic pixel detector for the ATLAS High-Luminosity upgrade

2019

The ATLAS collaboration is currently investigating CMOS monolithic pixel sensors for the outermost layer of the upgrade of its Inner Tracker (ITk). For this application, two large scale prototypes featuring small collection electrode have been produced in a radiation-hard process modification of a standard 0.18 μm CMOS imaging technology: the MALTA, with a novel asynchronous readout, and the TJ MONOPIX, based on the well established "column-drain" architecture. The MALTA chip is the first full-scale prototype suitable for the development of a monolithic module for the ITk. It features a fast and low-power front-end, an architecture designed to cope with an hit-rate up to 2 MHz/mm2 without c…

PhysicsMasking (art)Pixel010308 nuclear & particles physicsChip01 natural sciences030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineUpgrademedicine.anatomical_structureCMOSAtlas (anatomy)Asynchronous communication0103 physical sciencesparticle tracking detectors ; radiation-hard detectors ; electronic detector readout concepts ; front-end electronics for detector readoutmedicineElectronic engineeringDetectors and Experimental TechniquesInstrumentationMathematical PhysicsDegradation (telecommunications)Journal of Instrumentation
researchProduct

MALTA: a CMOS pixel sensor with asynchronous readout for the ATLAS High-Luminosity upgrade

2018

Radiation hard silicon sensors are required for the upgrade of the ATLAS tracking detector for the High- Luminosity Large Hadron Collider (HL-LHC) at CERN. A process modification in a standard 0.18 μm CMOS imaging technology combines small, low-capacitance electrodes (∼2 fF for the sensor) with a fully depleted active sensor volume. This results in a radiation hardness promising to meet the requirements of the ATLAS ITk outer pixel layers (1.5 × 1015 neq /cm2 ), and allows to achieve a high signal-to-noise ratio and fast signal response, as required by the HL-LHC 25 ns bunch crossing structure. The radiation hardness of the charge collection to Non-Ionizing Energy Loss (NIEL) has been previ…

PhysicsActive pixel sensors ; CMOS integrated circuits ; position sensitive particle detectors ; radiation effects ; radiation hardening (electronics) ; semiconductor detectors ; solid state circuit designPixelPhysics::Instrumentation and Detectors010308 nuclear & particles physicsbusiness.industryDetectorHigh Luminosity Large Hadron Collider01 natural sciencesCapacitance030218 nuclear medicine & medical imagingSemiconductor detector03 medical and health sciences0302 clinical medicineCMOSNuclear electronics0103 physical sciencesbusinessRadiation hardeningComputer hardware
researchProduct

Mini-MALTA: Radiation hard pixel designs for small-electrode monolithic CMOS sensors for the High Luminosity LHC

2020

Journal of Instrumentation 15(02), P02005 (2020). doi:10.1088/1748-0221/15/02/P02005

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsirradiation [n]measurement methods01 natural sciencesdamage [radiation]High Energy Physics - Experimentdesign [semiconductor detector]High Energy Physics - Experiment (hep-ex)n: irradiationupgrade [ATLAS][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Detectors and Experimental TechniquesInstrumentationRadiation hardeningphysics.ins-detMathematical PhysicsFront-end electronics for detector readout ; Particle tracking detectors (Solid-state detectors) ; Radiation-hard detectors ; Solid state detectorsradiation: damageSolid State DetectorsCMOS sensorLarge Hadron Colliderpixel: sizeInstrumentation and Detectors (physics.ins-det)CMOSOptoelectronicsParticle Physics - ExperimentperformancenoiseMaterials science610FOS: Physical sciencesContext (language use)Radiation-hard DetectorsNovel high voltage and resistive CMOS sensors [6]Front-end Electronics for Detector ReadoutRadiationCapacitanceRadiation-hard detectorsemiconductor detector: pixelsize [pixel]electrode: design0103 physical sciencesParticle Tracking Detectors (Solid-state Detectors)ddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsdesign [electrode]pixel [semiconductor detector]Pixel010308 nuclear & particles physicsbusiness.industryhep-exATLAS: upgradeefficiencyelectronics: readoutbusinessreadout [electronics]semiconductor detector: design
researchProduct