0000000000600516

AUTHOR

Giulio Lovatti

showing 2 related works from this author

Radioactive Beams for Image-Guided Particle Therapy : The BARB Experiment at GSI

2021

Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separati…

carbon ionssädehoitoPETkuvantaminenparticle therapyionitlääketieteellinen fysiikkaradioactive ion beamspositroniemissiotomografiapositronitoxygen ionshiukkassäteily
researchProduct

Radioactive Beams for Image-Guided Particle Therapy: The BARB Experiment at GSI

2021

Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separati…

carbon ionsPETparticle therapyNeoplasms. Tumors. Oncology. Including cancer and carcinogensradioactive ion beamsRC254-282oxygen ionsFrontiers in Oncology
researchProduct