0000000000602843

AUTHOR

Verena Saladin

Transgenerational immunity in a bird-ectoparasite system: do maternally transferred antibodies affect parasite fecundity or the offspring's susceptibility to fleas?

During egg formation, female birds deposit antibodies against parasites and pathogens they were exposed to before egg laying into the yolk. In captive bird species, it has been shown that these maternal immunoglobulins (maternal yolk IgGs) can protect newly hatched offspring against infection. However, direct evidence for such benefits in wild birds is hitherto lacking. We investigated (1) if nestling Great Tits Parus major originating from eggs with naturally high levels of maternal yolk IgG are less susceptible to a common, nest-based ectoparasite, (2) if maternal yolk IgGs influence nestling development and in particular, their own immune defence, and (3) if there is a negative correlati…

research product

Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits.

Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species - the great tit Parus major - at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), u…

research product

Data from: Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits

Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species – the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (&lt; 50 km)…

research product