0000000000602935

AUTHOR

Mohamed Elnourani

Reliable Underlay D2D Communications over Multiple Transmit Antenna Framework

Robust beamforming is an efficient technique to guarantee the desired receiver performance in the presence of erroneous channel state information (CSI). However, the application of robust beamforming in underlay device-to-device (D2D) communication still requires further investigation. In this paper, we investigate resource allocation problem for underlay D2D communications by considering multiple antennas at the base station (BS) and at the transmitters of D2D pairs. The proposed design problem aims at maximizing the aggregate rate of all D2D pairs and cellular users (CUs) in downlink spectrum. In addition, our objective is augmented to achieve a fair allocation of resources across the D2D…

research product

Distributed Resource Allocation in Underlay Multicast D2D Communications

Multicast device-to-device communications operating underlay with cellular networks is a spectral efficient technique for disseminating data to nearby receivers. However, due to the critical challenge of having an intelligent interference coordination between multicast groups along with the cellular network, it is necessary to judiciously perform resource allocation for the combined network. In this work, we present a framework for a joint channel and power allocation strategy to maximize the sum rate of the combined network while guaranteeing minimum rate to individual groups and cellular users. The objective function is augmented by an austerity function that penalizes excessive assignmen…

research product

Reliable Multicast D2D Communication Over Multiple Channels in Underlay Cellular Networks

Multicast device-to-device (D2D) communications operating underlay with cellular networks is a spectral efficient technique for disseminating data to the nearby receivers. However, due to critical challenges such as, mitigating mutual interference and unavailability of perfect channel state information (CSI), the resource allocation to multicast groups needs significant attention. In this work, we present a framework for joint channel assignment and power allocation strategy to maximize the sum rate of the combined network. The proposed framework allows access of multiple channels to the multicast groups, thus improving the achievable rate of the individual groups. Furthermore, fairness in …

research product

Robust Transmit Beamforming for Underlay D2D Communications on Multiple Channels

Underlay device-to-device (D2D) communications lead to improvement in spectral efficiency by simultaneously allowing direct communication between the users and the existing cellular transmission. However, most works in resource allocation for D2D communication have considered single antenna transmission and with a focus on perfect channel state information (CSI). This work formulates a robust transmit beamforming design problem for maximizing the aggregate rate of all D2D pairs and cellular users (CUs). Assuming complex Gaussian distributed CSI error, our formulation guarantees probabilistically a signal to interference plus noise ratio (SINR) above a specified threshold. In addition, we al…

research product

Non-convex Optimization for Resource Allocation in Wireless Device-to-Device Communications

Device-to-device (D2D) communication is considered one of the key frameworks to provide suitable solutions for the exponentially increasing data tra c in mobile telecommunications. In this PhD Thesis, we focus on the resource allocation for underlay D2D communications which often results in a non-convex optimization problem that is computationally demanding. We have also reviewed many of the works on D2D underlay communications and identi ed some of the limitations that were not handled previously, which has motivated our works in this Thesis. Our rst works focus on the joint power allocation and channel assignment problem in the D2D underlay communication scenario for a unicast single-inpu…

research product

Underlay Device-to-Device Communications on Multiple Channels

Author´s accepted manuscript (postprint). © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Since the spectral efficiency of wireless communications is already close to its fundamental bounds, a significant increase in spatial efficiency is required to meet future traffic demands. Device-to-device (D2D) communications provide such an increase by allowing nearby u…

research product

Reliable Underlay Device-to-Device Communications on Multiple Channels

Device-to-device (D2D) communications provide a substantial increase in spectrum usage and efficiency by allowing nearby users to communicate directly without passing their packets through the base station (BS). In previous works, proper channel assignment and power allocation algorithms for sharing of channels between cellular users and D2D pairs, usually require exact knowledge of the channel-state-information (CSI). However, due to the non-stationary wireless environment and the need to limit the communication and computation overheads, obtaining perfect CSI in the D2D communication scenario is generally not possible. In this work, we propose a joint channel assignment and power allocati…

research product