0000000000603032

AUTHOR

James P. Collman

Dihydrogen complexes of metalloporphyrins: characterization and catalytic hydrogen oxidation activity

A series of monometallic dihydrogen complexes of the type M(OEP)(L)(H{sub 2}) (M = Ru, Os; L = THF, *Im) was synthesized and characterized by {sup 1}H NMR. The H-H bond length was found to increase when Os was replaced by Ru or when *Im was replaced by THF. The bond distances (as determined by T{sub 1}) range from 0.92 to 1.18 {angstrom}. The first example of a bimetallic bridging dihydrogen complex, Ru{sub 2}(DPB)(*IM){sub 2}(H{sub 2}), was also prepared. The H{sub 2} ligand is simultaneously bound to both Ru-metal centers. High-field {sup 1}H NMR experiments (620 MHz) revealed a -7.37 Hz dipolar splitting of the H{sub 2} ligand for this complex. Analysis of this splitting suggests that th…

research product

An unprecedented, bridged dihydrogen complex of a cofacial metallodiporphyrin and its relevance to the bimolecular reductive elimination of hydrogen

Recently, the authors characterized the first metalloporphyrin dihydrogen complex, Os(OEP)(H{sub 2}), and proposed that a similar ruthenium porphyrin dihydrogen complex, Ru(OEP)(H{sub 2}), is involved as an intermediate in the catalytic H/D isotopic exchange between water and hydrogen. They now report that treatment of a metal-metal-bonded cofacial ruthenium porphyrin dimer with a sterically bulky ligand in the presence of hydrogen gas has yielded the first known complex containing a dihydrogen ligand bound between two metals. Such a bridged dihydrogen complex is proposed as an intermediate in the bimolecular elimination of dihydrogen from two metalloporphyrin hydrides.

research product