0000000000605674

AUTHOR

Catalin Gainaru

Non-ideal mixing behavior in dibutyl phosphate-propylamine binary liquids: Dielectric and nuclear magnetic resonance investigations

Abstract Owing to the amphiphilic nature of their constituent molecules, binary mixtures of pure liquid surfactants are usually characterized by enhanced nano-segregation and thus can exhibit interesting transport properties and complex macroscopic behavior. In this ambit it was recently shown by Turco Liveri et al. (J. Mol. Liq. 263 (2018) 274–281) at room temperature that mixtures of short aliphatic chains compounds, such as dibutyl phosphate (DBP) and n-propylamine (PA) liquids, due to their ability to allow for phosphate-to-amine proton transfer, display ionic liquid–like behavior with composition-dependent enhanced conductivity, viscosity, and magnetically-induced birefringence. To und…

research product

Nuclear Spin Relaxation in Viscous Liquids: Relaxation Stretching of Single-Particle Probes

Spin-lattice relaxation rates R1(ω,T), probed via high-field and field-cycling nuclear magnetic resonance (NMR), are used to test the validity of frequency-temperature superposition (FTS) for the reorientation dynamics in viscous liquids. For several liquids, FTS is found to apply so that master curves can be generated. The susceptibility spectra are highly similar to those obtained from depolarized light scattering (DLS) and reveal an excess wing. Where FTS works, two approaches are suggested to access the susceptibility: (i) a plot of deuteron R1(T) vs the spin-spin relaxation rate R2(T) and (ii) a plot of R1(T) vs an independently measured reference time τref(T). Using single-frequency s…

research product