Individualizing deep dynamic models for psychological resilience data
ABSTRACTDeep learning approaches can uncover complex patterns in data. In particular, variational autoencoders (VAEs) achieve this by a non-linear mapping of data into a low-dimensional latent space. Motivated by an application to psychological resilience in the Mainz Resilience Project (MARP), which features intermittent longitudinal measurements of stressors and mental health, we propose an approach for individualized, dynamic modeling in this latent space. Specifically, we utilize ordinary differential equations (ODEs) and develop a novel technique for obtaining person-specific ODE parameters even in settings with a rather small number of individuals and observations, incomplete data, an…