0000000000606740

AUTHOR

Patella B.

Electrochemical sensor for phosphate ions based on laser scriber reduced graphene oxide

This preliminary work shows a new and innovative way to produce laser scribed reduced graphene oxide (LSGO) electrodes using different porous substrates (ranging from paper to plastic and fabric). The obtained electrodes were also tested as electrochemical sensors towards the detection of phosphate ions in water. To obtain the electrodes, a water suspension of GO was filtered on top of substrate (such as Whatman® filter paper) and a complete sensor was obtained from its reduction using a CO2 laser. The electrode is composed of working and counter electrodes made of LSGO and a reference electrode of a Ag/AgCl obtained by using a commercial AgCl conductive paste. Phosphate ions were detected …

research product

Flexible electrode based on gold nanoparticles and reduced graphene oxide for uric acid detection using linear sweep voltammetry

In this work, an electrochemical sensor for uric acid determination is shown with a preliminary study for its validation in real samples (milk and urine). Uric acid can be electrochemically oxidized in aqueous solutions and thus it is possible to obtain electrochemical sensors for this chemical by means of this electrooxidation reaction. Indium tin oxide coated on flexible polyethylene terephthalate substrate, modified with reduced graphene oxide and gold nanoparticles by co-electrodeposition, was used. Electrodeposition was performed at -0.8V vs SCE for 200 s. All samples were characterized by electron scan microscopy and electron diffraction spectroscopy. A careful investigation on the ef…

research product

Nanostructured Materials Obtained by Electrochemical Methods: From Fabrication to Application in Sensing, Energy Conversion, and Storage

It is well known that physical and surface properties of nanomaterials are promising to enhance efficiency of nanostructured devices for sensing and for sustainable energy production, conversion, and storage. However, the practical use of nanomaterials is often complicated by the lack of scalable and cost-efficient synthesis procedures and the challenge of integrating into devices 1D nanomaterials saving their structural features. In this field, one of the most severe challenges is to find suitable methods for fabricating nanomaterials. Over the years, numerous preparation methods were proposed in the literature, but not all of them are easily scalable and economically advantageous for indu…

research product