0000000000607196

AUTHOR

Matthias Schulte

Irradiation Delays Tissue Growth but Enhances Osteogenic Differentiation in Vascularized Constructs.

Background Regenerative medicine is still deficient in the reconstruction after cancer due to impaired vascularization after radiotherapy and due to the need to substitute larger defects after tumor excision. Aiming at introducing regenerative medicine for reconstruction after cancer, we tested an axially vascularized bone construct in an experimental setting that mimics the clinical situation after tumor resection and adjuvant radiotherapy. Methods Twenty bone constructs were axially vascularized using microsurgically created arteriovenous loops and were implanted subcutaneously in Lewis rats. After 2 weeks, the animals were randomly allocated either to receive a clinically relevant singl…

research product

Context-Dependent Testing of Applications for Mobile Devices

research product

Context-Dependent app testing

-

research product

Low-energy extracorporeal shockwave therapy (ESWT) improves metaphyseal fracture healing in an osteoporotic rat model.

Purpose As result of the current demographic changes, osteoporosis and osteoporotic fractures are becoming an increasing social and economic burden. In this experimental study, extracorporeal shock wave therapy (ESWT), was evaluated as a treatment option for the improvement of osteoporotic fracture healing. Methods A well-established fracture model in the metaphyseal tibia in the osteoporotic rat was used. 132 animals were divided into 11 groups, with 12 animals each, consisting of one sham-operated group and 10 ovariectomized (osteoporotic) groups, of which 9 received ESWT treatment. Different energy flux intensities (0.15 mJ/mm2, 0.35 mJ/mm2, or 0.55 mJ/mm2) as well as different numbers o…

research product