0000000000608198
AUTHOR
Mathieu Claeys
A combination of algebraic, geometric and numerical methods in the contrast problem by saturation in magnetic resonance imaging
In this article, the contrast imaging problem by saturation in nuclear magnetic resonance is modeled as a Mayer problem in optimal control. The optimal solution can be found as an extremal solution of the Maximum Principle and analyzed with the recent advanced techniques of geometric optimal control. This leads to a numerical investigation based on shooting and continuation methods implemented in the HamPath software. The results are compared with a direct approach to the optimization problem and implemented within the Bocop toolbox. In complement lmi techniques are used to estimate a global optimum. It is completed with the analysis of the saturation problem of an ensemble of spin particle…
Comparison of Numerical Methods in the Contrast Imaging Problem in NMR
International audience; In this article, the contrast imaging problem in nuclear magnetic resonance is modeled as a Mayer problem in optimal control. A first synthesis of locally optimal solutions is given in the single-input case using geometric methods based on Pontryagin's maximum principle. We then compare these results using direct methods and a moment-based approach, and make a first step towards global optimality. Finally, some preliminary results are given in the bi-input case.