0000000000609116
AUTHOR
J. C. Ashley
Nonlinear calculations of the energy loss of slow ions in an electron gas
Abstract The stopping power of an electron gas for slow ons was calculated based on nonlinear, density-functional methods. These new theoretical results show substatnial increases in stopping powers for protons compared to calculations based on linear theory and provide a good qualitative description of the Z1-oscillations found in experimental data.
Nonlinear stopping power of an electron gas for slow ions
Theoretical calculations of the stopping power of the electron gas for slow ions, v${v}_{F}$, are reviewed. New results are presented for stopping power and effective charge based on nonlinear density-functional calculations. Extensive comparisons with available experimental data show that these new theoretical results are clearly superior to earlier calculations based on linear theory.