0000000000609545

AUTHOR

Frank Westermann

Focal DNA Copy Number Changes in Neuroblastoma Target MYCN Regulated Genes

Neuroblastoma is an embryonic tumor arising from immature sympathetic nervous system cells. Recurrent genomic alterations include MYCN and ALK amplification as well as recurrent patterns of gains and losses of whole or large partial chromosome segments. A recent whole genome sequencing effort yielded no frequently recurring mutations in genes other than those affecting ALK. However, the study further stresses the importance of DNA copy number alterations in this disease, in particular for genes implicated in neuritogenesis. Here we provide additional evidence for the importance of focal DNA copy number gains and losses, which are predominantly observed in MYCN amplified tumors. A focal 5 kb…

research product

Revised risk estimation and treatment stratification of low- and intermediate-risk neuroblastoma patients by integrating clinical and molecular prognostic markers.

Abstract Purpose: To optimize neuroblastoma treatment stratification, we aimed at developing a novel risk estimation system by integrating gene expression–based classification and established prognostic markers. Experimental Design: Gene expression profiles were generated from 709 neuroblastoma specimens using customized 4 × 44 K microarrays. Classification models were built using 75 tumors with contrasting courses of disease. Validation was performed in an independent test set (n = 634) by Kaplan–Meier estimates and Cox regression analyses. Results: The best-performing classifier predicted patient outcome with an accuracy of 0.95 (sensitivity, 0.93; specificity, 0.97) in the validation coh…

research product

PCF11 links alternative polyadenylation to formation and spontaneous regression of neuroblastoma

AbstractDiversification at the transcriptome 3’end is an important and evolutionarily conserved layer of gene regulation associated with differentiation and dedifferentiation processes. However the underlying mechanisms and functional consequences are poorly defined. Here, we identify extensive transcriptome-3’end-alterations in neuroblastoma, a tumour entity with a paucity of recurrent somatic mutations and an unusually high frequency of spontaneous regression. Utilising extensive RNAi-screening we reveal the landscape and drivers of transcriptome-3’end-diversification, discovering PCF11 as critical regulator, directing alternative polyadenylation (APA) of hundreds of transcripts including…

research product